Answer:
75 rad/s
Explanation:
The angular acceleration is the time rate of change of angular velocity. It is given by the formula:
α(t) = d/dt[ω(t)]
Hence: ω(t) = ∫a(t) dt
Also, angular velocity is the time rate of change of displacement. It is given by:
ω(t) = d/dt[θ(t)]
θ(t) = ∫w(t) dt
θ(t) = ∫∫α(t) dtdt
Given that: α (t) = (6.0 rad/s4)t² = 6t² rad/s⁴. Hence:
θ(t) = ∫∫α(t) dtdt
θ(t) = ∫∫6t² dtdt =∫[∫6t² dt]dt
θ(t) = ∫[2t³]dt = t⁴/2 rad
θ(t) = t⁴/2 rad
At θ(t) = 10 rev = (10 * 2π) rad = 20π rad, we can find t:
20π = t⁴/2
40π = t⁴
t = ⁴√40π
t = 3.348 s
ω(t) = ∫α(t) dt = ∫6t² dt = 2t³
ω(t) = 2t³
ω(3.348) = 2(3.348)³ = 75 rad/s
Explanation:
20 joule is your answer
Answer:
here
mass m =100kg
distance d=50m
acceleration due to gravity a =10m/s²
work =force×displacement
= ma/d=100×10/50=20joule
Answer:
6,600N
Explanation:
According to second law of motion, Force = mass × acceleration
If acceleration = change in velocity/time = 15/0.10
Acceleration = 150m/s²
Given mass = 44kg
Force = 44× 150
Force = 6,600N
Magnitude of the average force exerted on the passenger during this time is 6,600N
Explanation:
u=54 km/h
54*5/18=15 m/s
v=0m/s
t=?
acceleration=-0.5m/s^2
we know that a=v-u/t
so,
t=v-u/a
t=15-0/0.5
=15/0.5
=30
therefore, the time is 30 second
Hope this answer helps you..
Answer:
A) Force
Explanation:
It is an example of force since force is a vector quantity so it has magnitude and direction. In this case the magnitude is equal to 5 [N] and the direction is upward.
The weight can not be, as it always acts downward.
Mass is not a force, its unit is given usually in kilogram [kg]