Answer:
= -32.53 m / s
this velocity is directed downwards
Explanation:
This is a free fall exercise, let's use the expression
= v_{oy}^{2} + 2 g (y -yo)
where we are assuming that there is friction with the air, as the body falls its initial velocity is zero
v_{oy} = √ 2g (y - y₀)
let's calculate
v_{y} = √ (2 9.8 (0-54.0))
= -32.53 m / s
this velocity is directed downwards
b is your answers in this thread
A would be number 2. Newton's First Law states that an object at rest, will stay at rest and an object in motion, will stay in motion, unless acted upon by an unbalanced force. B would be number 3. His Second Law states that <span>the sum of the forces acting on a body is equal to the product of the mass of the body and the acceleration produced by the forces. And, C would be number 1. His Third Law states that for every action, there is an equal and opposite reaction. Hope this helps!</span>
Answer:
Index of expansion: 4.93
Δu = -340.8 kJ/kg
q = 232.2 kJ/kg
Explanation:
The index of expansion is the relationship of pressures:
pi/pf
The ideal gas equation:
p1*v1/T1 = p2*v2/T2
p2 = p1*v1*T2/(T2*v2)
500 C = 773 K
20 C = 293 K
p2 = 35*0.1*773/(293*1.3) = 7.1 bar
The index of expansion then is 35/7.1 = 4.93
The variation of specific internal energy is:
Δu = Cv * Δt
Δu = 0.71 * (20 - 500) = -340.8 kJ/kg
The first law of thermodynamics
q = l + Δu
The work will be the expansion work
l = p2*v2 - p1*v1
35 bar = 3500000 Pa
7.1 bar = 710000 Pa
q = p2*v2 - p1*v1 + Δu
q = 710000*1.3 - 3500000*0.1 - 340800 = 232200 J/kg = 232.2 kJ/kg
Answer:
4.62 N-s
Explanation:
recall that the formula for impulse is given by
Impulse = Force x change in time
in our case, we are given
Force = 14 N
change in time = 0.33s
Simply substituting the above into the equation for impulse, we get
Impulse = Force x change in time
Impulse = 14 x 0.33
= 4.62 N-s