600Hz is the driving frequency needed to create a standing wave with five equal segments.
To find the answer, we have to know about the fundamental frequency.
<h3>How to find the driving frequency?</h3>
- The following expression can be used to relate the fundamental frequency to the driving frequency;
f(n) = n * f (1)
where, f(1) denotes the fundamental frequency and the driving frequency f(n).
- The standing wave has four equal segments, hence with n=4 and f(n)=4, we may calculate the fundamental frequency.
f(4) = 4× f (1)
480 = 4× f(1)
f(1) = 480/4 =120Hz.
So, 120Hz is the fundamental frequency.
- To determine the driving frequency necessary to create a standing wave with five equally spaced peaks?
- For, n = 5,
f(n) = n 120Hz,
f(5) = 5×120Hz=600Hz.
Consequently, 600Hz is the driving frequency needed to create a standing wave with five equal segments.
Learn more about the fundamental frequency here:
brainly.com/question/2288944
#SPJ4
Answer:1200
Explanation:
Given data
Upper Temprature
Lower Temprature 
Engine power ouput
Efficiency of carnot cycle is given by





rounding off to two significant figures
