Answer:
Ring v² = gh
solid wheel (cylinder) v² = 4/3 gh
Explanation:
Let's use conservation of energy to find the speed of the wheels at the bottom of the hill.
starting point. Point before starting movement
Em₀ = mgh
final point. At the bottom of the hill
Em_f = K = ½ m v² + ½ I w²
energy is conserved
Emo = Em_f
mgh = ½ m v² + ½ I w²
angular and linear velocity are related
v = w r
we substitute
mgh = ½ m v² + ½ I v² / r²
mgh =
½ (m + I / r²) v²
v² =
the moments of inertia are tabulated
Ring
I = mr²
v² = 2 m g h / (m + m)
v² = gh
solid wheel (cylinder)
I = ½ m r²
v² = 2m gh / (m + m / 2)
v² = 4/3 gh
We can see that due to the difference in the moment of inertia of each body it is different, the solid wheel has more speed when it reaches the lower part of the ramp
Answer: opening of the nicotinic acetylcholine receptor channels.
Explanation:
Neuromuscular junction is a special junction formed between a motor neurone and a muscle fibre. The junction is fortified with nerves and receptors that helps in the transmission of signals from the motor neurone to the muscle fibre in order to bring about the desired voluntary movements through muscular contraction.
Nicotinic acetylcholine receptor are activated through the binding of acetylcholine at the neuromuscular junction. This action leads to influx of sodium ions to accomplish endplate potential.
Answer:
Last option in the list of possible answers, with U235 and n (neutron) in the left (originators) of the reaction diagram.
Explanation:
Uranium 235 (which is a fissile isotope of uranium) plus slow neutrons is what produce the chain reaction that feeds nuclear reactors.
Momentum is a vector quantity, and is always conserved. Whenever a collision occurs between two objects, the objects behave under the principle of conservation of momentum. Therefore, if an object moves in the direction opposite to its original direction after a collision, then this indicates that the momentum of the colliding object was greater than the object under consideration.
Answer:
(A) 0.3488 rad/sec
(B) 124.246 m
Explanation:
We have given car completes one revolution in 18 sec'
So time period T= 18 sec
Tangential speed v = 43.4 m/sec
(A) Angular velocity is given by 
(B) Tangential velocity is given v = 43.4 m /sec
We know that 
