Answer:
1845.26 ?
Explanation:
18.46 × 99.96= 1845.2616 = 1845.26
im not entirely sure though
Answer: Brightness consistency
There are three types of perceptual consistency
Types of Perceptual Constancy: Shape, Size, and Brightness Size constancy
Since the moon and sun affect light, brightness consistency is occurring.
Brightness constancy is our visual ability to perceive objects as having the same level of brightness even though the level of lighting changes.
Answer : The energy of one photon of hydrogen atom is, 
Explanation :
First we have to calculate the wavelength of hydrogen atom.
Using Rydberg's Equation:

Where,
= Wavelength of radiation
= Rydberg's Constant = 10973731.6 m⁻¹
= Higher energy level = 3
= Lower energy level = 2
Putting the values, in above equation, we get:


Now we have to calculate the energy.

where,
h = Planck's constant = 
c = speed of light = 
= wavelength = 
Putting the values, in this formula, we get:


Therefore, the energy of one photon of hydrogen atom is, 
Divide by 3.6
82/3.6 = 22.8 m/s
The potential across the capacitor at t = 1.0 seconds, 5.0 seconds, 20.0 seconds respectively is mathematically given as
- t=0.476v
- t=1.967v
- V2=4.323v
<h3>What is the potential across the capacitor?</h3>
Question Parameters:
A 1. 0 μf capacitor is being charged by a 9. 0 v battery through a 10 mω resistor.
at
- t = 1.0 seconds
- 5.0 seconds
- 20.0 seconds.
Generally, the equation for the Voltage is mathematically given as
v(t)=Vmax=(i-e^{-t/t})
Therefore
For t=1
V=5(i-e^{-1/10})
t=0.476v
For t=5s
V2=5(i-e^{-5/10})
t=1.967
For t=20s
V2=5(i-e^{-20/10})
V2=4.323v
Therefore, the values of voltages at the various times are
- t=0.476v
- t=1.967v
- V2=4.323v
Read more about Voltage
brainly.com/question/14883923
Complete Question
A 1.0 μF capacitor is being charged by a 5.0 V battery through a 10 MΩ resistor.
Determine the potential across the capacitor when t = 1.0 seconds, 5.0 seconds, 20.0 seconds.