Answer:
A) 1.88 * 10^17 m
B) 1.22 * 10^34 J
C) 1.95 * 10^34 J
Explanation:
Parameters given:
Mass of planet = 7.00 * 10^25 kg
Radius of orbit = 6.00 * 10^11 m
Force exerted on planet = 6.51 * 10^22 N
Velocity of planet = 2.36 * 10^4 m/s
A) The distance traveled by the planet is half of the circumference of the orbit (which is circular).
The circumference of the orbit is
C = 2 * pi * R
R = radius of orbit
C = 2 * 3.142 * 6.0 * 10¹¹
C = 3.77 * 10¹² m
Hence, distance traveled will be:
D = 0.5 * 3.77 * 10¹²
D = 1.88 * 10 ¹² m/s
B) Work done is given as:
W = F * D
W = 652 * 10²² * 1.88 * 10¹¹
W = 1.22 * 10³⁴ J
C) Change in Kinetic energy is given as:
K. E. = 0.5 * m * v²
K. E. = 0.5 * 7 * 10^25 * (2.36 * 10^4)²
K. E. = 1.95 * 10³⁴ J
Answer:
Explanation:
The variables we know and are given are:
time, t = 20s
Charge, Q = 3x1-^-6 electrons, which is just 3x10^-6C (C stands for Coulombs, which is the unit for Charge)
We need to find the current, I, and since we know Q and t we can substitute these values into the given equation:
I=Q/t (which if you look at what the RHS is saying, its Charge over time, or more literally means the amount of charge passing a point over a period of time)
If we substitute these values, we will get I as:
I = Q / t
I = 3x10^-6 / 20
I = 1.5x10^-7 A
Hope this helps!
An example would be 2 types of motion. It could be rectilinear or projectile motion. There are various equations for each type. Since you don't want me to tell you the answer, I could just express it in words. Then, it will be up to you to translate into mathematical equations.
For rectilinear motion, the distance traveled is equal to the initial velocity times the time, plus one-half of the acceleration times the square of the time. For projectile motion, the maximum distance is equal to the square of the initial velocity multiplied with the square of the sine of the launch angle, all over twice the gravity.