Answer:
the mass of the air in the classroom = 2322 kg
Explanation:
given:
A classroom is about 3 meters high, 20 meters wide and 30 meters long.
If the density of air is 1.29 kg/m3
find:
what is the mass of the air in the classroom?
density = mass / volume
where mass (m) = 1.29 kg/m³
volume = 3m x 20m x 30m = 1800 m³
plugin values into the formula
1.29 kg/m³ = <u> mass </u>
1800 m³
mass = 1.29 kg/m³ ( 1800 m³ )
mass = 2322 kg
therefore,
the mass of the air in the classroom = 2322 kg
Answer:
F=2627.6N
Explanation:
The work done by this resistive force while traveling a distance <em>d</em> underwater would be:

where the minus sign appears because the force is upwards and the displacement downwards.
This work is equal to the change of mechanical energy. At the diving plataform and underwater, when she stops moving, the woman has no kinetic energy, so all can be written in terms of her total change of gravitational potential energy:

Putting all together:

The amplitude is from the absolute value of the 0 point on the y-axis to the highest(peak) or lowest(troph) point of the wave. In this question, 3cm is the highest and -3cm is the lowest, so the amplitude is 3cm.
Answer:
The sun
Explanation:
In this system the energy of the sun heats the water in the pipe, producing a high pressured steam, which is used for moving a turbine and producing electricity, is a transformation of energy from solar to thermal, then to mechanical to electrical.