We will start by finding the heat in state one through the thermal efficiency or efficiency of a thermal machine is a coefficient or dimensionless ratio calculated as the ratio of the energy produced (in an operating cycle) and the energy supplied to the machine. Mathematically it is the relationship between the work generated and the heat emanated.
So,



The total change of energy is equivalent to 4500J and this is equal by conservation of energy to the total change in heat. So:




Therefore the energy which is discharged to the lower temperature reservoir every cicle is 921.7J
Answer:
Mass will be same on moon as on Earth but weight will be one-sixth of Earth.
Explanation:
Mass of a body doesn't depend on gravity. Mass is a constant quantity. So, mass on moon will be same as mass on Earth.
But, the weight of a body depends on gravity as weight is given as:

Therefore, if
is acceleration due to gravity on Earth, then weight on Earth is, 
Now, gravity on moon is one-sixth of Earth. So, 
Therefore, weight of the body on moon is, 
Therefore, a body has same mass both on moon and Earth but weight on moon is one-sixth of the weight on Earth.
Answer:
The total momentum before and after collision is 72000 kg-m/s.
Explanation:
Given that,
Mass of car = 1200 kg
Velocity of car = 10 m/s
Mass of truck = 2000 kg
Velocity of truck = 30 m/s
Using conservation of momentum
The total momentum before the collision is equal to the total momentum after collision.

Where,
=mass of car
=velocity of car
=mass of truck
=velocity of truck
Put the value into the formula



Now, The total momentum before collision is



The total momentum after collision is



Hence, The total momentum before and after collision is 72000 kg-m/s.