Answer:
I was traveling on a train where I fell asleep. someone stole my luggage in which I had money and other essentials. when the ticket checker arrived a lady paid my fine. she helped me a lot. when I told her about being robbed she helped me and took me to the police station and I found my bag. I insisted she take the money she paid for my fine but she said that in return you too help someone."I have never found such a kind person ever since.".....
Explanation: I think this is what you are looking for. Hope this helps.
Answer:
B, increases rate of collisions
Explanation:
Being given the hydronium (or simply the hydrogen) ion concentration (molarity), one of the easiest properties of the solution to determine is its pH. The pH of a solution indicates the acidity (or basicity) of a given solution. The typical pH range of solutions is from 1 to 14, with 7 being neutral, 1 to 6 being acidic, and 8 to 14 being basic.
To determine the pH of a solution, the negative log (-log) of the hydronium/hydrogen ion concentration (molarity) of the solution is calculated. Thus (assuming that the given hydrogen ion concentration is in molarity (mol/L)),
pH = -log(

) or -log(

pH = -log (<span>7.94 × 10−6 mol/L)
pH = 5.13Because the pH is less than 7 (within the range 1 to 6),
then the black coffee solution is acidic. </span>
B. Troposphere, stratosphere, mesosphere, thermosphere
Answer:
Their particles exhibit the same type of intermolecular interaction
Explanation:
In chemistry, we commonly say that 'like dissolves like'. This implies that polar solvents dissolves polar solutes while nonpolar solvents dissolve nonpolar solutes.
This phenomenon of 'like dissolves like' is possible because, the dissolution of one substance in another involves intermolecular interaction between the solute and solvent molecules.
If the molecules of solute and solvent are both nonpolar and have about the same magnitude of intermolecular (dispersion) forces, interaction between the both molecules is significant hence the solute dissolves completely in the solvent.