1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
AleksandrR [38]
3 years ago
13

In medieval warfare, one of the greatest technological advancement was the trebuchet. The trebuchet was used to sling rocks into

castles. You are asked to study the motion of such a projectile for a group of local enthusiast planning a medieval war reenactment. Unfortunately an actual trebuchet had not been built yet, so you decide to first look at the motion of a thrown ball as a model of rocks thrown by a trebuchet. Specifically, you are interested in how the horizontal and the vertical components of the velocity for a thrown object change with time. 1. Make a large rough sketch of the trajectory of the ball after it has been thrown. Draw the ball in at least five different positions; two when the ball is going up, two when it is going down, and one at its maximum height. Label the horizontal and vertical axes of your coordinate system.
2. On the sketch, draw and label the expected acceleration vectors of the ball (relative sizes and directions) for the five different positions. Decompose each acceleration vector into its vertical and horizontal components.
3. On the sketch, draw and label the velocity vectors of the object at the same positions you chose to draw your acceleration vectors. Decomposes each velocity vector into its vertical and horizontal components. Check to see that the changes in the velocity vector are consistent with the acceleration vectors.
4. Looking at the sketch, how does someone expect the ball's horizontal acceleration to change with time? Could you give a possible equation giving the ball's horizontal acceleration as a function of time? Graph this equation. If there are constants in your equation, what kinematic quantities do they represent? How would someone determine these constants from the graph?
5. Looking at the sketch, how does someone expect the ball's horizontal velocity to change with time? Is it consistent with the statements about the ball's acceleration from the previous question? Could you give a possible equation for the ball's horizontal velocity as a function of time? Graph this equation. If there are constants in the equation, what kinematic quantities do they represent? How would someone determine these constants from the graph?
6. Could you give a possible equation for the ball's horizontal position as a function of time? Graph this equation. If there are constants in the equation, what kinematic quantities do they represent? How would someone determine these constants from the graph? Are any of these constants related to the equations for horizontal velocity or acceleration?
7. Repeat questions 4-6 for the vertical component of the acceleration, velocity, and position. How are the constants for the acceleration, velocity and position equations related?
Physics
1 answer:
NNADVOKAT [17]3 years ago
4 0

Answer:

2) a_y= -g  3) vₓ=constant v_y = v_{oy} - g t, 4)  vₓ = v₀ₓ - ax t

5)  changes the horizontal speed, should change range

7) changes the vertical speed change the maximum height

Explanation:

1) After reading your long writing, we are going to solve the exercise, in the attachment you can see the different vectors.

2) The acceleration vectors are vertical and directed downwards due to the attraction of the Earth (gravity force) this force is constant, on the x axis there is no acceleration

3) the velocity vectors on the x-axis are constant because there are no relationships and the y-axis changes value according to the expression

           v_y = v_{oy} - gt

at the point of maximum height, vy = 0 is equal to the maximum height

4) For someone to change the horizontal acceleration we must assume a friction with the air, in this case they relate it would be in the opposite direction to the horizontal speed

In the graph it would be directed to the left, therefore the velocity would be

           vₓ = v₀ₓ - ax t

5 and 6) If someone changes the horizontal speed, they should change the range of the shot for greater horizontal speed, the rock goes further.

the equations of motion are

           x = v₀ₓ t

           y = v_{oy} t - ½ g t²

7) If someone changes the vertical speed change the maximum height, but not the scope of the shot, for higher speed higher maximum height,

the equations of motion are the same.

You might be interested in
Compute the work performed when 32 pounds is lifted 10 feet.
Murljashka [212]
W = force * displacement
W = 32 pounds * 10 feet
Now you need to convert it to newton and meters
W = 142 N * 3.048 m = 434 J
(I approximated the conversions- I hope it helps)
7 0
3 years ago
Which ball (if either) has the greatest speed at the moment of impact
Ierofanga [76]
Are there any options??


I would have to say metal of course but without options I can't assume anything
5 0
3 years ago
Read 2 more answers
Air at 400 kPa, 980 K enters a turbine operating at steady state and exits at 100 kPa, 670 K. Heat transfer from the turbine occ
Angelina_Jolie [31]

Answer:

a). \frac{\dot{W}}{m}= 311 kJ/kg

b). \frac{\dot{\sigma _{gen}}}{m}=0.9113 kJ/kg-K

Explanation:

a). The energy rate balance equation in the control volume is given by

\dot{Q} - \dot{W}+m(h_{1}-h_{2})=0

\frac{\dot{Q}}{m} = \frac{\dot{W}}{m}+m(h_{1}-h_{2})

\frac{\dot{W}}{m}= \frac{\dot{Q}}{m}+c_{p}(T_{1}-T_{2})

\frac{\dot{W}}{m}= -30+1.1(980-670)

\frac{\dot{W}}{m}= 311 kJ/kg

b). Entropy produced from the entropy balance equation in a control volume is given by

\frac{\dot{Q}}{T_{boundary}}+\dot{m}(s_{1}-s_{2})+\dot{\sigma _{gen}}=0

\frac{\dot{\sigma _{gen}}}{m}=\frac{-\frac{\dot{Q}}{m}}{T_{boundary}}+(s_{2}-s_{1})

\frac{\dot{\sigma _{gen}}}{m}=\frac{-\frac{\dot{Q}}{m}}{T_{boundary}}+c_{p}ln\frac{T_{2}}{T_{1}}-R.ln\frac{p_{2}}{p_{1}}

\frac{\dot{\sigma _{gen}}}{m}=\frac{-30}{315}+1.1ln\frac{670}{980}-0.287.ln\frac{100}{400}

\frac{\dot{\sigma _{gen}}}{m}=0.0952+0.4183+0.3978

\frac{\dot{\sigma _{gen}}}{m}=0.9113 kJ/kg-K

5 0
3 years ago
the measure of each exterior angle of a regular pentagon is ___ the measure of each exterior angle of a regular nonagon
Cerrena [4.2K]

Answer:

(a) 72°

(b) 40°

Explanation:

PENTAGON

First, we calculate the total angles in a Pentagon using:

180(n - 2)

Where n = number of sides of the polygon, in this case, 5.

Hence, the total angle in a polygon is

180(5 - 2) = 180 * 3 = 540°

Therefore, each angle will be:

540°/5 = 108°

Because the interior angle and exterior angle form a straight line (180°), the exterior angle of a regular pentagon will be:

180 - 108 = 72°

The exterior angle of a regular Pentagon is 72°

NONAGON

First, we calculate the total angles in a Nonagon using:

180(n - 2)

Where n = number of sides of the polygon, in this case, 9.

Hence, the total angle in a polygon is

180(9 - 2) = 180 * 7 = 1260°

Therefore, each angle will be:

1260°/9 = 140°

Because the interior angle and exterior angle form a straight line (180°), the exterior angle of a regular nonagon will be:

180 - 140 = 40°

The exterior angle of a regular Nonagon is 40°

4 0
3 years ago
If you shake one end of a rope up and down , a wave passes through the rope. Which type of wave is it?
liberstina [14]

Answer: a transverse wave

Explanation:

8 0
3 years ago
Read 2 more answers
Other questions:
  • Suppose you are 80 cm from a plane mirror. What area of the mirror is used to reflect the rays entering one eye from a point on
    13·1 answer
  • one type of wave used to transmit a signal is a ultraviolet wave. infrared wave. radio wave. x-ray wave.
    7·2 answers
  • What is the most appropriate SI unit to express the speed of a cyclist in a 10-km race? km/s cm/h km/h mm/s
    9·1 answer
  • What document did the King of England sign that said the people had rights and that the king was not above the law?
    13·1 answer
  • Write and solve a MA or efficiency problem
    13·1 answer
  • What is the average speed of an alien space ship that traveled 10,000 km in 600 hours?
    9·1 answer
  • PLEASE HELP!!! URGENTTT
    7·1 answer
  • I WOULD APPRECIATE YOUR HELP
    6·1 answer
  • Need help ASAP, 1 MC
    15·1 answer
  • The cylinder valve is open and the gas is collected and atmospheric pressure
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!