Answer:
Hydrogen sulfide
Explanation:
A nonoxidizing acid is the acid which cannot act as oxidizing agent and thus furnish hydrogen ions. Example: HCl
Iron(II) sulfide reacts with nonoxidizing acid, say hydrochloric acid to give rotten egg smelling gas, H₂S (Hydrogen sulfide).
The reaction is shown below:
FeS (s) + 2HCl (aq) ⇒ FeCl₂ (s) + H₂S (g)
A general reaction is also shown below of the reaction of Iron(II) sulfide with any nonoxidizing acid, HX as:
FeS (s) + 2HX (aq) ⇒ FeX₂ (s) + H₂S (g)
Answer: For the elementary reaction
the molecularity of the reaction is 2, and the rate law is rate = ![k[NO_3]^1[CO]^1](https://tex.z-dn.net/?f=k%5BNO_3%5D%5E1%5BCO%5D%5E1)
Explanation:
Order of the reaction is defined as the sum of the concentration of terms on which the rate of the reaction actually depends. It is the sum of the exponents of the molar concentration in the rate law expression.
Elementary reactions are defined as the reactions for which the order of the reaction is same as its molecularity and order with respect to each reactant is equal to its stoichiometric coefficient as represented in the balanced chemical reaction.
Molecularity of the reaction is defined as the number of atoms, ions or molecules that must colloid with one another simultaneously so as to result into a chemical reaction. Thus it can never be fractional.
For elementary reaction
, molecularity is 2 and rate law is ![rate=k[NO_3]^1[CO]^1](https://tex.z-dn.net/?f=rate%3Dk%5BNO_3%5D%5E1%5BCO%5D%5E1)
You have 0.50 mol of NH3 and 0.20 mol of NH4+ to start (NH4Cl dissolves completely), given the molarity and 1.0 L solution.
30.0 mL of 1.0 M HCl is 0.0300 mol of HCl. This will react with the NH3 to produced 0.030 mol of NH4+.
You now have 0.47 mol NH3 and 0.23 mol NH4+. Now use the Henderson-Hasselbach equation to calculate your pH. The equation says to use concentration of acid and base, but you can just use the moles of them because it doesn’t make a difference.
pH = pKa + log(base/acid)
pKa = 14 - pKb = 14 - 4.75 = 9.25
pH = 9.25 + log(0.47/0.23) = 9.56
Sorry my friend you don't have options so It can't be answered...
Answer:
Explanation:The Î""G°′ of the reaction is −7.180 kJ·mol−1. Calculate the equilibrium constant for the reaction at 25 °