Explanation:
Both conduction and convection are both forms of heat transfer from one place to another.
- In conduction, there must be contact between two bodies for the process to take place but in convection, the matter moves to transfer heat.
- Conduction mostly occurs in solid substances whereas convection occurs mostly in fluids.
- Heat transfer in conduction is quite slow compared to convection which is much faster.
Example of conduction is heating of iron pot when cooking
Example of convection is the refrigerating system.
It posed a contradiction to Quantum Theory
Answer: The correct answer is the option: B. An element with eight valence electrons is chemically unstable.
Explanation:
Hello! Let's solve this!
We will analyze each of the options:
A. The group number of the element provides a clue to the number of valence electrons: it is correct, since it provides the number of valence electrons.
B. An element with eight valence electrons is chemically unstable: this is not correct, since elements with eight electrons in the valence shell cannot react because they already have the last complete shell. Therefore, they are chemically stable.
C. The points must be placed one at a time on each side of the chemical symbol: it is correct, because that is the way to make the point diagram.
D. An atom is chemically stable if all the points are paired: this is correct since this verifies that the point diagram has been done well.
We conclude that the correct answer is the option: B. An element with eight valence electrons is chemically unstable.
Hope this helps..... Stay safe and have a Merry Christmas!!!!!!!!! :D
Answer:
1231
Explanation:
nnfjjkdnsggjnSVDDK and that how u get the answer i a grammer
The answer is: the pressure inside a can of deodorant is 1.28 atm.
Gay-Lussac's Law: the pressure of a given amount of gas held at constant volume is directly proportional to the Kelvin temperature.
p₁/T₁ = p₂/T₂.
p₁ = 1.0 atm.; initial pressure
T₁ = 15°C = 288.15 K; initial temperature.
T₂ = 95°C = 368.15 K, final temperature
p₂ = ?; final presure.
1.0 atm/288.15 K = p₂/368.15 K.
1.0 atm · 368.15 K = 288.15 K · p₂.
p₂ = 368.15 atm·K ÷ 288.15 K.
p₂ = 1.28 atm.
As the temperature goes up, the pressure also goes up and vice-versa.