1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
user100 [1]
3 years ago
11

I WILL MARK Brainest

Chemistry
1 answer:
wolverine [178]3 years ago
5 0
It should be sketch,identify, dig, then set water for the watering times, hope this helps, hope you feel better soon
You might be interested in
in example 5.11 of the text the molar volume of n2 at STP is given as 22.42 L/mol how is this number calculatd how does the mola
Valentin [98]

Answer:

V = 22.42 L/mol

N₂ and H₂ Same molar Volume at STP

Explanation:

Data Given:

molar volume of N₂ at STP = 22.42 L/mol

Calculation of molar volume of N₂ at STP  = ?

Comparison of molar volume of H₂ and N₂ = ?

Solution:

Molar Volume of Gas:

The volume occupied by 1 mole of any gas at standard temperature and pressure and it is always equal to 22.42 L/ mol

Molar volume can be calculated by using ideal gas formula  

                               PV = nRT

Rearrange the equation for Volume

                            V = nRT / P . . . . . . . . . (1)

where

P = pressure

V = Volume

T= Temperature

n = Number of moles

R = ideal gas constant

Standard values

P = 1 atm

T = 273 K

n = 1 mole

R = 0.08206 L.atm / mol. K

Now put the value in formula (1) to calculate volume for 1 mole of N₂

                   V = 1 x 273 K x 0.08206 L.atm / mol. K / 1 atm

                   V = 22.42 L/mol

Now if we look for the above calculation it will be the same for H₂ or any gas. so if we compare the molar volume of 1 mole N₂ and H₂ it will be the same at STP.

6 0
3 years ago
Which of the following pairs of elements could possibly be in the same group? X has a 1+ ion; Y has a 1- ion. X tends to form a
exis [7]
Let's eliminate these one by one.
The first pair would not be the same, as X would most likely be in group IA, and Y would be in group VIIA, because of their tendency to gain and lose electrons.
The second pair would also violate the same rule, but X would most likely be in group IIA, and Y would most likely be in group VIA.
The third pair would not be the same, as X is most likely in group VIIA, and since Y has eight valence electrons, it is most likely a noble gas.
The final pair has X with atomic number 15, making it phosphorous. Phosphorous wants to gain 3 electrons to have a full octet of 8 outer "valence" electrons, and Y would also like to gain 3 electrons. This means it is possible that the final pair would be in the same group.
5 0
4 years ago
Read 2 more answers
Explain why gases condense when they are cooled
Sindrei [870]
We can explain this in a molecular level. We know that the difference between a gas and a liquid of the same composition is how fast their molecules are moving. So given a gas, their molecules are farther and faster when moving, but when they are cooled their bulk kinetic energy decreases. In other words their molecules start to move closer and move slower until it behaves more like a liquid molecule. This is the time when gases condense. 
4 0
3 years ago
Read 2 more answers
When 9.2 g of frozen N2O4 is added to a 0.50 L reaction vessel and the vessel is heated to 400 K and allowed to come to equilibr
Amanda [17]

<u>Answer:</u> The value of K_c for the given reaction is 1.435

<u>Explanation:</u>

To calculate the molarity of solution, we use the equation:

\text{Molarity of the solution}=\frac{\text{Mass of solute}}{\text{Molar mass of solute}\times \text{Volume of solution (in L)}}

Given mass of N_2O_4 = 9.2 g

Molar mass of N_2O_4 = 92 g/mol

Volume of solution = 0.50 L

Putting values in above equation, we get:

\text{Molarity of solution}=\frac{9.2g}{92g/mol\times 0.50L}\\\\\text{Molarity of solution}=0.20M

For the given chemical equation:

                 N_2O_4(g)\rightleftharpoons 2NO_2(g)

<u>Initial:</u>          0.20

<u>At eqllm:</u>     0.20-x        2x

We are given:

Equilibrium concentration of N_2O_4 = 0.057

Evaluating the value of 'x'

\Rightarrow (0.20-x)=0.057\\\\\Rightarrow x=0.143

The expression of K_c for above equation follows:

K_c=\frac{[NO_2]^2}{[N_2O_4]}

[NO_2]_{eq}=2x=(2\times 0.143)=0.286M

[N_2O_4]_{eq}=0.057M

Putting values in above expression, we get:

K_c=\frac{(0.286)^2}{0.143}\\\\K_c=1.435

Hence, the value of K_c for the given reaction is 1.435

6 0
3 years ago
A force interaction requires at least a(n)
Anastaziya [24]
C.) Action force unless it has potential/stored enerygy

8 0
3 years ago
Read 2 more answers
Other questions:
  • HELP WITH CHEMISTRY PLEASE!
    15·2 answers
  • How do you label the delta E, on an energy diagram
    13·1 answer
  • In a polyatomic ion, the -ate ending indicates one ____ oxygen than the -ite ending.
    7·1 answer
  • If a scientist did an experiment to see how adding sugar to plant water would affect the plant’s growth, what would be the depen
    15·1 answer
  • Which statement is true of the rock cycle?
    8·2 answers
  • In sience is copper a element or not a element
    5·1 answer
  • Topic experiment of rate of reaction. answer with explanations. don't answer bad things or wrong you would be reported.​
    8·1 answer
  • 1. What are the differences between lonic and covalent bonds?
    8·1 answer
  • Please help me whoever does help me gets 16 points just please help me
    13·1 answer
  • What is the transfer of energy by a wave to the medium through which it travels
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!