Answer:
Explanation:
<u>1. Equilibrium equation</u>
<u>2. Equilibrium constant</u>
The liquid substances do not appear in the expression of the equilibrium constant.
![k_c=\dfrac{[HBr(g)]^2}{[H_2]}=4.8\times 10^8M](https://tex.z-dn.net/?f=k_c%3D%5Cdfrac%7B%5BHBr%28g%29%5D%5E2%7D%7B%5BH_2%5D%7D%3D4.8%5Ctimes%2010%5E8M)
<u>3. ICE table.</u>
Write the initial, change, equilibrium table:
Molar concentrations:
H₂(g) + Br₂(l) ⇄ 2HBr(g)
I 0.400 0
C - x +2x
E 0.400 - x 2x
<u>4. Substitute into the expression of the equilibrium constant</u>

<u>5. Solve the quadratic equation</u>
- 192,000,000 - 480,000,000x = 4x²
- x² + 120,000,000x - 48,000,000 = 0
Use the quadratic formula:

The only valid solution is x = 0.39999999851M
Thus, the final concentration of H₂(g) is 0.400 - 0.39999999851 ≈ 0.00000000149 ≈ 1.5 × 10⁻⁹M
Answer:
increasing thirst when cells need water
Explanation:
hope this helps
<span>Answer: the average kinetic energy of the particles.
</span><span />
<span>Jusitification:
</span><span />
<span>Temperature and heat energy are closely related.
</span><span />
<span>While heat is the kinetic energy of the particles of a substance which is transferred from a hotter substance to a cooler one, the temperature is a measure of the average kinetic energy of the particles in a substance.
</span><span />
<span>The relatively high kinetic energy the particles of a warm substance is transferred to the cooler one by the motion (vibration or translation) of the atoms of molecules. The energy transferred is heat energy.</span>
Answer: C2H4
Explanation:
The percentage composition of ethanol ( C2H5OH ) consist of 52.2% Carbon, Hydrogen of 13.0 and 34.8% of Oxygen.
The percentage composition of ethane gas (C2H6) consist of 80.0% carbon and 20.0% hydrogen.
The composition of Ethylene Glycols i.e C2H4(OH)2 is Carbon of 39.7%, 9.7% hydrogen and 51.6% oxygen.
The percent composition of c2h4 is 86% carbon, and 14% hydrogen.
From the information given, the substance with the highest percentage of carbon is C2H4
13.6
a) yes Pb is more reactive that Ag, Pb before Ag
b) no, Cu after H
c) yes, Cl2 is more active than I2
4) yes, Mg is more active
13.7 (as I think)
Al ³⁺ more active than Zn²⁺, Mn can react with Zn²⁺, but not with Al ³⁺ , because Mn after Al but before Zn