Answer:
114 kPa
Explanation:
Using Gay-Lussac's law you get the equation
and converting celcius you get the final equation of
. After dividing 85.5 by 27+273(300) you get 0.285 and then you multiply 0.285 by 127+273 (400). You finally get 114 kPa
Answer:
I think acetone has more because water is just H20
<h3>
Answer:</h3>
1.9 moles
<h3>
Explanation:</h3>
Carbon dioxide (CO₂) is a compound that is made up of carbon and oxygen elements.
It contains 2 moles of oxygen atoms and 1 mole of carbon atoms
Therefore;
We would say, 1 mole of CO₂ → 2 moles of Oxygen atoms + 1 mole of carbon atoms
Thus;
If a sample of CO₂ contains 3.8 moles of oxygen atoms we could use mole ratio to determine the moles of CO₂
Mole ratio of CO₂ to Oxygen is 1 : 2
Therefore;
Moles of CO₂ = 3.8 moles ÷ 2
= 1.9 moles
Hence, the moles of CO₂ present in a sample that would produce 3.8 moles of Oxygen atoms is 1.9 moles
A. When the substance is in its gaseous state.
<u>Explanation:</u>
When a substance is expanding against its constant volume and pressure, its temperature increases except when the substance is in gaseous state and not in liquid or solid state. So the internal energy increase in the system not only increases and maintaining the volume and pressure of the system remains constant in its gaseous phase. In the first law of Thermodynamics, it is used specifically that to especially in the case of gaseous system.
<u></u>
Moles of gas = 0.123
<h3>Further explanation</h3>
In general, the gas equation can be written

where
P = pressure, atm , N/m²
V = volume, liter
n = number of moles
R = gas constant = 0.082 l.atm / mol K (P= atm, v= liter),or 8,314 J/mol K (P=Pa or N/m2, v= m³)
T = temperature, Kelvin
Volume(V) =2.5 L
Pressure(P) = 1.2 atm
Temperature(T) = 25 + 273=298 K
