The overall order of a reaction is directly
related to the reaction mechanism of the reaction. The reaction mechanism is
defined by the reaction rate equation. In this case, we are given by the
equation, Rate=k. The order of this reaction is zero since the rate is
not dependent on the concentration of reactants or products.
Part A
75.0 mL of 0.10 M HF; 55.0 mL of 0.15 M NaF
This combination will form a buffer.
Explanation
Here, weak acid HF and its conjugate base F- is available in the solution
Part B
150.0 mL of 0.10 M HF; 135.0 mL of 0.175 M HCl
This combination cannot form a buffer.
Explanation
Here, moles of HF = 0.15 x 0.1 = 0.015 moles
Moles of HCl = 0.135 x 0.175 = 0.023
Since HCl is a strong acid and the number of HCl is higher than HF. This prevents the dissociation of HF and the conjugate base F- will not be available in the solution
Part C
165.0 mL of 0.10 M HF; 135.0 mL of 0.050 M KOH
This combination will form a buffer.
Explanation
Moles of HF = 0.165 x 0.1 = 0.0165 moles
Moles of KOH = 0.135 x 0.05 = 0.00675 moles
Moles of KOH is not sufficient for the complete neutralization of HF. Thus weak acid HF and its conjugate base F- is available in the solution and form a buffer
Part D
125.0 mL of 0.15 M CH3NH2; 120.0 mL of 0.25 M CH3NH3Cl
This combination will form a buffer
Explanation
Here, weak acid CH3NH3+ and its conjugate base CH3NH2 is available in the solution and form a buffer
Part E
105.0 mL of 0.15 M CH3NH2; 95.0 mL of 0.10 M HCl
This combination will form a buffer
Explanation
Moles of CH3NH2 = 0.105 x 0.15 = 0.01575 moles
Moles of HCl = 0.095 x 0.1 = 0.0095 moles
Thus the HCl completely reacts with CH3NH2 and converts a part of the CH3NH2 to CH3NH3+. This results weak acid CH3NH3+ and its conjugate base CH3NH2 is in the solution and form a buffer
The last one is the suns energy