Choose the aqueous solution below with the lowest freezing point. These are all solutions of nonvolatile solutes and you should
assume ideal van't Hoff factors where applicable. Choose the aqueous solution below with the lowest freezing point. These are all solutions of nonvolatile solutes and you should assume ideal van't Hoff factors where applicable. A. 0.075 m Li I
B. 0.075 m (NH4)3PO4
C. 0.075 m NaIO4
D. 0.075 m KCN
E. 0.075 m KNO2
Our strategy here is to recall the van´t Hoff factor, i, for the colligative properties of electrolyte solutions which appears as the consequence that electrolytes disociate completely in their solutions in water.
Thus in this problem we need to determine i and then realize the one with the lowest freezing point will have the biggest i ( all the concentrations are equal) since
Now we know that an atom wants to complete its outer shell while keeping electrons in pairs of two now in A there are four electrons which which can be ejected while in B will want to accept 3 electrons to complete its shell as ejecting five will take lot of energy similar case will be for C,D and E which would want to accept 2,1,0 electrons respectively
Cellular respiration can be thought of as the opposite of photosynthesis. In cellular respiration oxygen is turned into carbon dioxide while in photosynthesis carbon dioxide is tuned to oxygen.
I hope this helps. let me know in the comments if anything is unclear.