Answer: Km = 10μM
Explanation: <u>Michaelis-Menten constant</u> (Km) measures the affinity a enzyme has to its substrate, so it can be known how well an enzyme is suited to the substrate being used. To determine Km another value associated to an eznyme is important: <em>Turnover number (Kcat)</em>, which is the number of time an enzyme site converts substrate into product per unit time.
Enzyme veolcity is calculated as:
![V_{0} = \frac{E_{t}.K_{cat}.[substrate]}{K_{m}+[substrate]}](https://tex.z-dn.net/?f=V_%7B0%7D%20%3D%20%5Cfrac%7BE_%7Bt%7D.K_%7Bcat%7D.%5Bsubstrate%5D%7D%7BK_%7Bm%7D%2B%5Bsubstrate%5D%7D)
where Et is concentration of enzyme catalitic sites and has to have the same unit as velocity of enzyme, so Et = 20nM = 0.02μM;
To calculate Km:
![V_{0}*K_{m} + V_{0}*[substrate] = E_{t}.K_{cat}.[substrate]](https://tex.z-dn.net/?f=V_%7B0%7D%2AK_%7Bm%7D%20%2B%20V_%7B0%7D%2A%5Bsubstrate%5D%20%3D%20E_%7Bt%7D.K_%7Bcat%7D.%5Bsubstrate%5D)
![K_{m} = \frac{E_{t}.K_{cat}.[substrate]-V_{0}*[substrate]}{V_{0}}](https://tex.z-dn.net/?f=K_%7Bm%7D%20%3D%20%5Cfrac%7BE_%7Bt%7D.K_%7Bcat%7D.%5Bsubstrate%5D-V_%7B0%7D%2A%5Bsubstrate%5D%7D%7BV_%7B0%7D%7D)

Km = 10μM
<u>The Michaelis-Menten for the substrate SAD is </u><u>10μM</u><u>.</u>
Ammonium chloride is a white solid that breaks down when heated and produces ammonia and hydrogen chloride.
<h3>What is the reversible reaction?</h3>
A reversible reaction is a reaction in which the conversion of reactants to products and products to reactants occur at the same time. In the above example, the chemical shows a reversible reaction because it moves both forward and backward direction. In reversible reaction, equal amount of reactant is converted into product and product into reactant.
So we can conclude that Ammonium chloride is a chemical that represents a reversible reaction.
Learn more about reaction here: brainly.com/question/11231920
#SPJ1
Answer:
a. tiny particles that make up all matter
CO2 + H2O = H2CO3
<span>
Your equation is already balanced, and the reaction type is: </span><em><u>synthesis.</u></em>