The law of conservation of mass<span> states that </span>mass<span> in an isolated system is neither created nor destroyed by chemical reactions or physical transformations.
</span>
Answer:
You are looking for expected peaks in absorption spectra founded on structure of desired product, respectively on bound in desired compound. Every bond absorb specific energy from radiation which wavelength match to IR spectrum of light. Result of energy absorption is vibration of bond and bonded atoms (if they are not too heavy).That absorbed energy is seen as a peak in absorption spectra. These peaks are specific for each bound so you need to find peaks that mach to bounds in your desired compound and in that matter you can identify your compound.
In nuclear magnetic resonance you are looking for peaks specific for atoms in your desired compound (H or C atoms). When external magnetic field is applied, atom goes in higher energy state. When atoms goes "relaxing", it releasing energy that mach energy gap from relaxed end excited state. That energy is detected on nuclear magnetic resonance spectra and it depends on neighbor atom so you can determine the position of atoms and identify structure of desired compound.
For better results it is the best to combine these two methods.
Explanation:
The astronomical unit or also know as AU. Scientists use this because it’s convenient and easier to understand! Hope this helps ;)
Mass Molar of

Ca = 3*40 = 120 amu
P = 2*31= 62 amu
O = (16*4)*2 = 64*2 = 128 amu
--------------------------------------
Mass Molar of

= 120 + 62 + 128 = 310 g/mol
Therefore: <span>What is the gram formula mass of Ca3(PO4)2 ?
</span>Answer:
310 grams
Answer:
substitution is the best method or collecting like terms
Explanation: