1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
tino4ka555 [31]
2 years ago
7

An insulated tank contains 50 kg of water, which is stirred by a paddle wheel at 300 rpm while transmitting a torque of 0.1 kN-m

. At the same time, an electric resistance heater inside the tank operates at 110 V, drawing a current of 2 A. Determine the rate of heat transfer after the system achieves steady state.
Physics
1 answer:
kenny6666 [7]2 years ago
3 0

Answer:

the rate of heat transfer after the system achieves steady state is -3.36 kW

Explanation:

Given the data in the question;

mass of water m = 50 kg

N = 300 rpm

Torque T = 0.1 kNm

V = 110 V

I = 2 A

Electric work supplied W₁ = PV = 2 × 110 = 220 W = 0.22 kW

Now, work supplied by paddle wheel W₂ is;

W₂ = 2πNT/60

W₂ = (2π × 0.1 × 300) / 60

W₂ = 188.495559 / 60

W₂ = 3.14 kW

So the total work will be;

W = 0.22 + 3.14

W = 3.36 kW

Hence total work done on the system is 3.36 kW.

At steady state, the properties of the system does not change so the heat transfer will be 3.36 KW.

The heat will be rejected by the system so the sign of heat will be negative.

i.e Q = -3.36 kW

Therefore,  the rate of heat transfer after the system achieves steady state is -3.36 kW

You might be interested in
An inductor in an LC circuit has a maximum current of 2.4 A and a maximum energy of 56 mJ.
Harrizon [31]

Answer:

The energy stored in the capacitor, when the current in the inductor is 1.2 A, is 41.6 mJ.

Explanation:

In a LC oscillating circuit, the energy is stored in the electric field (between the plates of the capacitor) and in the magnetic field (surrounding the wires of the inductor).

At any time, the sum of both energies can be expressed as follows:

E = 1/2 Q² / C   +  1/2 L I²

In this type of circuit, energy oscillates, which means that it is exchanging between both fields all time.

When the capacitor is completely discharged, all the energy is stored in the magnetic field, and at that time, the current is maximum.

The total energy, when I is maximum, can be written as follows:

E = 1/2 L I² (1)

In our case, when I= 2.4A, E= 56 mJ.

So, we can find out the value of L, which will allow us to know the value of the magnetic energy at any time, having the value of the instantaneous current.

Solving for L in (1):

L = 2 *.56 mJ / (2.4)² A² = 20 mH

The next step is getting the value of the energy stored in the inductor, when I = 1.2 A, as follows:

Em = 1/2 *20 mH.* (1.2)² A² = 14.4 mJ

As the total energy must be always the same, i.e., 56 mJ, the energy stored in the capacitor, assuming no losses, must be the difference between the total energy and the one stored in the magnetic field:

Ec = 56 mJ - 14.4 mJ = 41.6 mJ

3 0
3 years ago
1. A sprinter races in the 100 meter dash. It takes him 10 second to reach the finish line
poizon [28]

Answer:

v = 10 m/s

Explanation:

Given that,

Distance covered by a sprinter, d = 100 m

Time taken by him to reach the finish line, t = 10 s

We need to find his average velocity. We know that velocity is equal to the distance covered divided by time taken. So,

v = d/t

v=\dfrac{100\ m}{10\ s}\\\\v=10\ m/s

Hence, his average velocity is 10 m/s.

6 0
2 years ago
Please help me with this question
valkas [14]

Answer: m∠P ≈ 46,42°

because using the law of sines in ΔPQR

=> sin 75°/ 4 = sin P/3

so ur friend is wrong due to confusion between edges

+) we have: sin 75°/4 = sin P/3

=> sin P = sin 75°/4 . 3 = (3√6 + 3√2)/16

=> m∠P ≈ 46,42°

Explanation:

4 0
3 years ago
Which of the given will facilitate a normal Diels–Alder reaction?
babymother [125]

Answer:

D

Explanation:

-  The rate of the Diels-Alder is orders of magnitude faster if there is an electron-withdrawing group on the dienophile. For example, replacing a hydrogen on ethene with the electron-withdrawing group CN results in about a 10^5 increase in the reaction rate.

- Other common electron withdrawing functional groups that will accelerate the Diels Alder reaction of dienophiles include aldehydes, ketones, and esters.

- In short, any functional group conjugated with the pi bond which can act as a pi acceptor will accelerate a Diels-Alder reaction with a typical diene.

- See attachment for graphical explanation.

7 0
3 years ago
A star is located at a distance of about 100 million light years from Earth. An astronomer plans to measure the distance of the
nlexa [21]
<span>d. The parallaxes beyond a few thousand light years are
too small to be measured with common instruments.

I'm not sure that parallax can even be used out to a few
thousand light years.

The NEAREST star to Earth has the BIGGEST parallax.
The star is Alpha Centauri.  It's only 4 light years away
from us, and its parallax is  0.000206 of a degree !
I have no idea how astronomers can measure angles
so small ... and that's the BIGGEST parallax angle of
ANY star.</span>
5 0
3 years ago
Other questions:
  • A toy gun uses a spring to project a 6.4 g soft rubber sphere horizontally. The spring constant is 9.0 N/m, the barrel of the gu
    8·1 answer
  • What does this equation mean FeDe=FrDr
    7·1 answer
  • What is the work done by the electric force to move a 1 c charge from a to b?
    8·1 answer
  • If a high jumper needs to make his center of gravity rise 1.50 m, how fast must he be able to sprint? Assume all of his kinetic
    13·1 answer
  • Earth's core is composed primarily of _____. -iron oxides and magnesium -silicon and iron -iron and nickel -magnesium and nickel
    11·1 answer
  • The switch on the electromagnet, initially open, is closed. What is the direction of the induced current in the wire loop (as se
    9·1 answer
  • What increases the work output of a machine
    9·1 answer
  • An airplane of mass 1.60 ✕ 104 kg is moving at 66.0 m/s. The pilot then increases the engine's thrust to 7.70 ✕ 104 N. The resis
    13·1 answer
  • John is preparing for his way to school. His house is 30 km away. What time will he be in school if he leaves his house at 6:30
    11·1 answer
  • A block of wood of length L = 21.0 cm, width w = 9.53 cm, and height h = 5.92 cm is just barely immersed in water by placing a m
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!