With the help of a transformer input voltage is transformed into an output voltage
<h3>What is induced voltage?</h3>
Electromagnetic induction is what causes the induced voltage. Electromagnetic induction is the process of generating emf (induced voltage) by subjecting a conductor to a magnetic field.
In this case, a magnet is pushed in and out of a wire coil attached to a high-resistance voltmeter.
Typically, a transformer's primary winding is attached to the input voltage source and changes electrical power into a magnetic field.
The secondary winding's role is to turn this alternating magnetic field into electricity, generating the necessary output voltage.
Hence with the help of a transformer input voltage is transformed into an output voltage.
To learn more about the induced voltage refer to the link;
brainly.com/question/19482771
#SPJ1
Answer:
2.69 m/s
Explanation:
Hi!
First lets find the position of the train as a function of time as seen by the passenger when he arrives to the train station. For this state, the train is at a position x0 given by:
x0 = (1/2)(0.42m/s^2)*(6.4s)^2 = 8.6016 m
So, the position as a function of time is:
xT(t)=(1/2)(0.42m/s^2)t^2 + x0 = (1/2)(0.42m/s^2)t^2 + 8.6016 m
Now, if the passanger is moving at a constant velocity of V, his position as a fucntion of time is given by:
xP(t)=V*t
In order for the passenger to catch the train
xP(t)=xT(t)
(1/2)(0.42m/s^2)t^2 + 8.6016 m = V*t
To solve this equation for t we make use of the quadratic formula, which has real solutions whenever its determinat is grater than zero:
0≤ b^2-4*a*c = V^2 - 4 * ((1/2)(0.42m/s^2)) * 8.6016 m =V^2 - 7.22534(m/s)^2
This equation give us the minimum velocity the passenger must have in order to catch the train:
V^2 - 7.22534(m/s)^2 = 0
V^2 = 7.22534(m/s)^2
V = 2.6879 m/s