1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Vinvika [58]
3 years ago
14

In a research facility, a person lies on a horizontal platform which floats on a film of air. When the person's heart beats, it

pushes a mass m of blood into the aorta with speed v, and the body and platform move in the opposite direction with speed V. Assume that the blood's speed is 56.5 cm/s. The mass of the person + platform is 54.0 kg. The platform moves 6.30 ✕ 10−5 m in 0.160 s after one heartbeat. Calculate the mass (in g) of blood that leaves the heart. Assume that the mass of blood is negligible compared with the total mass of the person, and the person + platform is initially at rest. (Also assume that the changes in velocity are instantaneous.)
Physics
2 answers:
Nikolay [14]3 years ago
8 0

Answer:

Explanation:

Guven:

Mass of person + platform, Mt = 54 kg

= 54000 g

Velocity, Vb = 56.5 cm/s

Distance, D = 6.3 × 10^-5 m

= 6.3 × 10^-3 cm

Time = 0.16 s

V = distance/time

= 6.3 × 10^-3/0.16

= 0.039375 cm/s

From the question,

Mt × V = Mb × Vb

54000 × 0.039375 = Mb × 56.5

Calculating mass of blood,

Mb = 37.63 g

= 37.63 g of blood

anastassius [24]3 years ago
7 0

Answer: 3.48g

Explanation:

here, we will be using conservation of momentum to solve the problem. i.e the total momentum remains unchanged, unless an external force acts on the system. We'll in thus question, there is no external force acting in the system.

Remember, momentum = mass * velocity, then

mass of blood * velocity of blood = combined mass of subject and pallet * velocity of subject and pallet

Velocity of blood = 56.5cm = 0.565m

mass of blood * 0.565 = 54kg * (0.000063/0.160)

mass of blood * 0.565 = 54 * 0.00039375

mass of blood * 0.565 = 0.001969

mass of blood = 0.00348kg

Thus, the mass of blood that leaves the heart is 3.48g

You might be interested in
using newtons law a force of 250N is applied to an object that accelerates at a rate of 5M/s2 what is the mass of the object?
AURORKA [14]

Answer:

50 kg

Explanation:

F = ma

250 N = m (5 m/s²)

m = 50 kg

7 0
3 years ago
PLZ EXPLAIN IM SO CONFUSED AND THIS IS DUE TONIGHT. I WILL GIVE 50 POINTS!
bezimeni [28]

When you first pull back on the pendulum, and when you pull it back really high the Potential Energy is high and the Kinetic Energy is low, But when up let go, and it gets right around the middle, that's when the Potential energy transfers to Kinetic, at that point the kinetic Energy is high and the potential Energy is low. But when it comes back up at the end. The same thing will happen, the Potential Energy is high, and the Kinetic Energy is low. Through all of that the Mechanical Energy stays the same. 

I hope this helps. :)

Brainliest?

8 0
3 years ago
Which is the best example of Newton's First Law of Motion? A small, lightweight ball and a large, heavy ball are dropped off the
Marizza181 [45]
I believe the best example of Newton's First Law of motion would be the example or illustration with the basketball player. An object will move in a straight line or a given direction at a constant speed unless or until another force acts upon the object, causing a change in speed and or direction.
4 0
3 years ago
Read 2 more answers
Count the number of atoms of each element in this molecule: 3He(H20)2 PLEASE HELPP!!!!!!​
kykrilka [37]

Answer:

He=3 H=6 O=6

Explanation:

8 0
3 years ago
What is the mass moment of inertia of a 20kg sphere with a radius of 0.2m about a point on the sphere's perimeter
Kobotan [32]

Answer:

I = M R^2 is the moment of inertia about a point that is a distance R from the center of mass (uniform distributed mass).

The moment  of inertia about the center of a sphere is 2 / 5 M R^2.

By the parallel axis theorem the moment of inertia about a point on the rim of the sphere is  I = 2/5 M R^2 + M R^2 = 7/5 M R^2

I = 7/5 * 20 kg * .2^2 m = 1.12 kg m^2

7 0
2 years ago
Other questions:
  • If someone is moving at a constant speed of 100 km/h and accelerate to 120km /h in 10 s what is the acceleration
    11·1 answer
  • What instrument can be used to show the shape of a sound wave?
    14·1 answer
  • Write a use of reverberation
    14·1 answer
  • Lisa is eating dinner.Which sensory organs is she most likely using to process what she is eating?
    10·2 answers
  • Save
    7·1 answer
  • Please I need help ill give u 50 points
    14·1 answer
  • Match the concepts in Column 1 to the definitions and explanations in Column 2.
    5·1 answer
  • Find the weight of an object with mass 80 kg on the moon ( g = 1.6 m/s^2)
    14·1 answer
  • Before a rifle is fired, the linear momentum of the bullet-rifle system is zero.
    13·1 answer
  • A crowbar 27 in. long is pivoted 8 in. from the end. What force must be applied at the long end in order to lift a 600 lb object
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!