Answer:
Electric potential, E = 2100 volts
Explanation:
Given that,
Electric field, E = 3000 N/C
We need to find the electric potential at a point 0.7 m above the surface, d = 0.7 m
The electric potential is given by :


V = 2100 volts
So, the electric potential at a point 0.7 m above the surface is 2100 volts. Hence, this is the required solution.
Answer:
We feel cold when tap or well water in winter because heat flows from hot body to cold body.
Explanation:
Our <em>body</em><em> </em><em>is</em><em> </em><em>in</em><em> </em><em>optimal</em><em> </em><em>status</em><em> </em><em>is</em><em> </em><em>a</em><em> </em><em>hot</em><em> </em><em>body</em><em> </em><em>and</em><em> </em><em>tap</em><em> </em><em>or</em><em> </em><em>we</em><em>ll</em><em> </em><em>water</em><em> </em><em>is</em><em> </em><em>a</em><em> </em><em>cold</em><em> </em><em>body</em><em>.</em><em> </em><em>Theref</em><em>ore</em><em> </em><em>we</em><em> </em><em>feel</em><em> </em><em>cold</em><em>.</em>
Answer:
Explanation:
a ) Let let the frictional force needed be F
Work done by frictional force = kinetic energy of car
F x 107 = 1/2 x 1400 x 35²
F = 8014 N
b )
maximum possible static friction
= μ mg
where μ is coefficient of static friction
= .5 x 1400 x 9.8
= 6860 N
c )
work done by friction for μ = .4
= .4 x 1400 x 9.8 x 107
= 587216 J
Initial Kinetic energy
= .5 x 1400 x 35 x 35
= 857500 J
Kinetic energy at the at of collision
= 857500 - 587216
= 270284 J
So , if v be the velocity at the time of collision
1/2 mv² = 270284
v = 19.65 m /s
d ) centripetal force required
= mv₀² / d which will be provided by frictional force
= (1400 x 35 x 35) / 107
= 16028 N
Maximum frictional force possible
= μmg
= .5 x 1400 x 9.8
= 6860 N
So this is not possible.
Answer:
Energy is transformed from potential to kinetic and vice versa
Explanation:
The energy is transformed from mechanical to kinetic energy when the object changes its position with respect to a reference point, where it loses height but increases its speed. When the object is at maximum height with respect to a reference point, it will have its maximum potential energy value. When the object passes through the reference point it will have potential energy equal to zero, but this energy will become kinetic energy.
The most characteristic and real example is that of a pendulum at one end, as can be seen in the attached image.
When the pendulum is located at the top end, as shown in Figure 1, at that point the maximum potential energy will be held. Then the pendulum is released and when it passes through the reference point and its height is zero, with respect to that point, all potential energy will have become kinetic energy in the same way at this point the maximum speed of the pendulum will be set.