Answer:
a) 0.138J
b) 3.58m/S
c) (1.52J)(I)
Explanation:
a) to find the increase in the translational kinetic energy you can use the relation

where Wp is the work done by the person and Wg is the work done by the gravitational force
By replacing Wp=Fh1 and Wg=mgh2, being h1 the distance of the motion of the hand and h2 the distance of the yo-yo, m is the mass of the yo-yo, then you obtain:

the change in the translational kinetic energy is 0.138J
b) the new speed of the yo-yo is obtained by using the previous result and the formula for the kinetic energy of an object:

where vf is the final speed, vo is the initial speed. By doing vf the subject of the formula and replacing you get:

the new speed is 3.58m/s
c) in this case what you can compute is the quotient between the initial rotational energy and the final rotational energy

hence, the change in Er is about 1.52J times the initial rotational energy
E = I R
That means
Voltage = (current) x (resistance)
= (2.5 A) x (2.4 ohms)
= 6 volts .
Answer:
m = 1.5 kg
Explanation:
Data:
- Aceleration (a) = 8 m/s²
- Force (F) = 12 N
- Mass (m) = ?
Use formula:
Replace in the formula:
Equate the newtons:
Simplify m/s²:
It divides:
What is the mass of the train?
The mass of the train is <u>1.5 kilograms.</u>
The correct answer is D. The water absorbs energy which causes the water molecules to have more kinetic and potential energy, changing their configuration from a liquid to a gas.