<span>Answer: option (1) solubility of the solution increases.
</span><span />
<span>Justification:
</span><span />
<span>The solubility of substances in a given solvent is temperature dependent.
</span><span />
<span>The most common behavior of the solubility of salts in water is that the solubiilty increases as the temperature increase.
</span><span />
<span>To predict with certainty the solubility at different temperatures you need the product solubility constants (Kps), which is a constant of equlibrium of the dissolution of a ionic compound slightly soluble in water, or a chart (usually experimental chart) showing the solubilities at different temperatures.
</span><span />
<span>KClO₃ is a highly soluble in water, so you do not work with Kps.
</span><span />
<span>You need the solubility chart or just assume that it has the normal behavior of the most common salts. You might know from ordinary experience that you can dissolve more sodium chloride (table salt) in water when the water is hot. That is the same with KClO₃.
</span><span>The solubility chart of KlO₃ is almost a straight line (slightly curved upward), with positive slope (ascending from left to right) meaning that the higher the temperature the more the amount of salt that can be dissolved.</span>
111.6g of Fe + 156g of Cr + 192g of O = 459.6g of Fe2(CrO4)3
Atoms in covalent bonds do combine so as to be stable. As covalent bond consist non metals e.g O2 in this example each atom has vacance of 2 orbitals/ electrons so shairing electrons result their stability
Carbonated drinks are a mixture of many compounds such as glucose(sugar) and others, while water is simply its own molecule.
Answer:
1.45 x 10²³ particles
Explanation:
Given parameters:
Number of moles of carbon = 0.24moles
Unknown:
Number of particles = ?
Solution:
A mole of a substance contains the Avogadro's number of particles.
The Avogadro's number of particles is 6.02 x 10²³
So;
0.24 moles of carbon will contain 0.24 x 6.02 x 10²³ = 1.45 x 10²³ particles