Answer:
-7.23 rad/s
Explanation:
Given that
Mass of the cockroach, m = 0.157 kg
Radius of the disk, r = 14.9 cm = 0.149 m
Rotational Inertia, I = 5.92*10^-3 kgm²
Speed of the cockroach, v = 2.92 m/s
Angular velocity of the rim, w = 3.89 rad/s
The initial angular momentum of rim is
Iw = 5.92*10^-3 * 3.89
Iw = 2.3*10^-2 kgm²/s
The initial angular momentum of cockroach about the axle of the disk is
L = -mvr
L = -0.157 * 2.92 * 0.149
L = -0.068 kgm²/s
This means that we can get the initial angular momentum of the system by summing both together
2.3*10^-2 + -0.068
L' = -0.045 kgm²/s
After the cockroach stops, the total inertia of the spinning disk is
I(f) = I + mr²
I(f) = 5.92*10^-3 + 0.157 * 0.149²
I(f) = 5.92*10^-3 + 3.49*10^-3
I(f) = 9.41*10^-3 kgm²
Final angular momentum of the disk is
L'' = I(f).w(f)
L''= 9.41*10^-3w(f)
Using the conservation of total angular momentum, we have
-0.068 = 9.41*10^-3w(f) + 0
w(f) = -0.068 / 9.41*10^-3
w(f) = -7.23 rad/s
Therefore, the speed of the lazy Susan after the cockroach stops is -7.23 and is directed in the opposite direction of the initial lazy Susan angular speed
b)
The mechanical energy of the cockroach is not converted as it stops