Answer:
K₂CrO₅
Explanation:
The empirical formula is the simplest formula of a compound. To find the empirical formula, we follow the procedure below:
Elements Potassium Chromium Oxygen
Mass 6.52 4.34 5.34
Molar mass 39 60 16
Number of moles 6.52/39 4.34/60 5.34/16
0.167 0.072 0.333
Divide through by
the smallest 0.167/0.072 0.072/0.072 0.333/0.072
2.3 1 4.6
2 1 5
Empirical formula K₂CrO₅
Answer:
Density = mass/volume
= 44/22.4
= 1.96 gram/liter
The density of the Carbon Dioxide at S.T.P. (Standard Temperature and Volume) is 1.96 gram/liter.
Your answer is D. 8
16 = 2^4
72 = 2^3*3^2
So you'll choose 2^3 = 8
Answer:
Iron is oxidized while chlorine is reduced.
Explanation:
The oxidation reduction reactions are called redox reaction. These reactions are take place by gaining or losing the electrons and oxidation state of elements are changed.
Oxidation:
Oxidation involve the removal of electrons and oxidation state of atom of an element is increased.
Reduction:
Reduction involve the gain of electron and oxidation number is decreased.
Consider the following reaction:
2FeCl₂ + Cl₂ → 2FeCl₃
in this reaction the oxidation state of iron is increased from +2 to +3. That's why iron get oxidized and it is reducing agent because it reduced the chlorine. The chlorine is reduced from -2 to -3 and it is oxidizing agent because it oxidized the iron.
2Fe⁺²Cl₂⁻²
2Fe⁺³Cl₃⁻³
The iron atom gives it three electrons to three atoms of chlorine and gain positive charge while chlorine atom accept the electron and form anion.
Answer: The correct option is The properties of a noble gas.
Explanation: There are 7 periods in the periodic table.
The last element of each period are Helium (He), Neon (Ne), Argon (Ar), Krypton (Kr), Xenon (Xe), Radon (Rn) and Ununoctium (Uuo).
- The electronic configuration for Helium is
. For He, The outermost electrons are 2.
- The electronic configuration for all the other elements is
( where, n = 2, 3, 4, 5, 6 and 7 respectively). For all the other gases, the outermost electrons are 8.
All these elements have stable electronic configuration and are not reactive in nature. Hence, they are considered as noble gases.
Therefore, the last element of each period always have the properties of a noble gas.