1 - A balanced equation for the reaction is 3NH4ClO4 + 3Al -------> Al2O3 + AlCl3 + 6H2O + 3NO
2 - Ammonium perchlorate is the oxidizing agent while aluminum powder is the reducing agent.
Molar mass of aluminum oxide = 102 g/mol;
The molar mass of ammonium perchlorate =117.5 g/mol.
From the equation of reaction 3 moles of ammonium perchlorate react with 3 moles of aluminum to produce 1 mole of aluminum oxide.
That is 3 x 7.5 g of ammonium perchlorate reacts with g of aluminum to produce 102 g/mol of aluminum oxide. Also 150g.
150 g of ammonium perchlorate produces (150 * 102)/(3*117.5) g of aluminum oxide = 43.4 g of aluminum oxide.
If you need to learn more about the balanced equation, click here;
brainly.com/question/26694427
#SPJ4
A example it a because titration is weak Suck it greeeeeeeeennnnnn boyyyyyyyyyy
I’m sorry if I wasted your time but I think it’s alkali metals but I’m
Not sure
Answer:
Explanation:
To find the concentration; let's first compute the average density and the average atomic weight.
For the average density
; we have:

The average atomic weight is:

So; in terms of vanadium, the Concentration of iron is:

From a unit cell volume 

where;
= number of Avogadro constant.
SO; replacing
with
;
with
;
with
and
with 
Then:
![a^3 = \dfrac { n \Big (\dfrac{100}{[(100-C_v)/A_{Fe} ] + [C_v/A_v]} \Big) } {N_A\Big (\dfrac{100}{[(100-C_v)/\rho_{Fe} ] + [C_v/\rho_v]} \Big) }](https://tex.z-dn.net/?f=a%5E3%20%3D%20%5Cdfrac%20%20%20%7B%20n%20%5CBig%20%28%5Cdfrac%7B100%7D%7B%5B%28100-C_v%29%2FA_%7BFe%7D%20%5D%20%2B%20%5BC_v%2FA_v%5D%7D%20%5CBig%29%20%7D%20%20%20%20%7BN_A%5CBig%20%28%5Cdfrac%7B100%7D%7B%5B%28100-C_v%29%2F%5Crho_%7BFe%7D%20%5D%20%2B%20%5BC_v%2F%5Crho_v%5D%7D%20%5CBig%29%20%20%7D)
![a^3 = \dfrac { n \Big (\dfrac{100 \times A_{Fe} \times A_v}{[(100-C_v)A_{v} ] + [C_v/A_Fe]} \Big) } {N_A \Big (\dfrac{100 \times \rho_{Fe} \times \rho_v }{[(100-C_v)/\rho_{v} ] + [C_v \rho_{Fe}]} \Big) }](https://tex.z-dn.net/?f=a%5E3%20%3D%20%5Cdfrac%20%20%20%7B%20n%20%5CBig%20%28%5Cdfrac%7B100%20%5Ctimes%20A_%7BFe%7D%20%5Ctimes%20A_v%7D%7B%5B%28100-C_v%29A_%7Bv%7D%20%5D%20%2B%20%5BC_v%2FA_Fe%5D%7D%20%5CBig%29%20%7D%20%20%20%20%7BN_A%20%20%5CBig%20%28%5Cdfrac%7B100%20%5Ctimes%20%5Crho_%7BFe%7D%20%5Ctimes%20%20%5Crho_v%20%7D%7B%5B%28100-C_v%29%2F%5Crho_%7Bv%7D%20%5D%20%2B%20%5BC_v%20%5Crho_%7BFe%7D%5D%7D%20%5CBig%29%20%20%7D)
![a^3 = \dfrac { n \Big (\dfrac{100 \times A_{Fe} \times A_v}{[(100A_{v}-C_vA_{v}) ] + [C_vA_Fe]} \Big) } {N_A \Big (\dfrac{100 \times \rho_{Fe} \times \rho_v }{[(100\rho_{v} - C_v \rho_{v}) ] + [C_v \rho_{Fe}]} \Big) }](https://tex.z-dn.net/?f=a%5E3%20%3D%20%5Cdfrac%20%20%20%7B%20n%20%5CBig%20%28%5Cdfrac%7B100%20%5Ctimes%20A_%7BFe%7D%20%5Ctimes%20A_v%7D%7B%5B%28100A_%7Bv%7D-C_vA_%7Bv%7D%29%20%5D%20%2B%20%5BC_vA_Fe%5D%7D%20%5CBig%29%20%7D%20%20%20%20%7BN_A%20%20%5CBig%20%28%5Cdfrac%7B100%20%5Ctimes%20%5Crho_%7BFe%7D%20%5Ctimes%20%20%5Crho_v%20%7D%7B%5B%28100%5Crho_%7Bv%7D%20-%20C_v%20%5Crho_%7Bv%7D%29%20%5D%20%2B%20%5BC_v%20%5Crho_%7BFe%7D%5D%7D%20%5CBig%29%20%20%7D)
Replacing the values; we have:



