Answer:
1.7 bar
Explanation:
We can use the <em>Ideal Gas Law</em> to calculate the individual gas pressure.
pV = nRT Divide both sides by V
p = (nRT)/V
Data: n = 1.7 × 10⁶ mol
R = 0.083 14 bar·L·K⁻¹mol⁻¹
T = 22 °C
V = 2.5 × 10⁷ L
Calculations:
(a) <em>Change the temperature to kelvins
</em>
T = (22 + 273.15) K
= 295.15 K
(b) Calculate the pressure
p = (1.7 × 10⁶ × 0.083 14 × 295.15)/(2.5× 10⁷)
= 1.7 bar
Answer: - 436.5 kJ.
Explanation:
According to Hess’s law of constant heat summation, the heat absorbed or evolved in a given chemical equation is the same whether the process occurs in one step or several steps.
According to this law, the chemical equation can be treated as ordinary algebraic expression and can be added or subtracted to yield the required equation.
The given chemical reaction is,

Now we have to determine the value of
for the following reaction i.e,

According to the Hess’s law, if we divide the reaction by half then the
will also get halved and on reversing the reaction , the sign of enthlapy changes.
So, the value
for the reaction will be:


Hence, the value of
for the reaction is -436.5 kJ.
Answer:
the answer is the swecond option
Explanation:
Its b ur well come
Earth isn’t likely going to be running out of gold for around 50-100 years
If the forces are equal and in opposite directions, the net force will equal zero.
Consider a tug-of-war team. If they are pulling with equal forces against each other, the red cloth on the rope will not move.
<em>F = ma
</em>
The cloth is not moving, so <em>a = </em>0 and the net force <em>F = </em>0.