Answer:
When the velocity is set to a constant value, the displacement increases with time but the acceleration remains zero
Explanation:
plato
Answer:

Explanation:
We are asked to find the mass of a cabinet, given the force and acceleration. According to Newton's Second Law of Motion, force is the product of mass and acceleration. The formula for this is:

The force is 200 Newtons, but we should convert the units to make unit cancellation easier. 1 Newton is equal to 1 kilogram meter per second squared, so the force of 200 Newtons is 200 kilogram meters per second squared.
The mass is unknown and the acceleration is 4 meters per second per second or 4 meters per second squared.
Substitute the values into the formula.

We are solving for the mass, m, so we must isolate the variable. It is being multiplied by 4 meters per second squared. The inverse operation of multiplication is division. Divide both sides by 4 m/s²


The units of meters per second squared cancel.


The mass of the cabinet is <u>50 kilograms.</u>
Answer:
1/9 of that just outside the smaller sphere
Explanation:
The electric field strength produced by a charged sphere outside the sphere itself is equal to that produced by a single point charge:

where
k is the Coulomb's constant
Q is the charge on the sphere
r is the distance from the centre of the sphere
Calling R the radius of the first sphere, the electric field just outide the surface of the first sphere is

The second sphere has a radius which is 3 times that of the smaller sphere:

So, the electric field just outside the second sphere is

So, the correct answer is 1/9.
To solve the problem, we
must know the heat capacity of ice and water.
For Cp = 2090 J/kg C
H = mCpT
H = (10 kg) ( 2090 J/ Kg C)
( -23 C)
H = - 480700 J
For water Cp = 4180 j/kg C
H = (100 kg) ( 4180 J/kg C)
( 60 C)
<span>H = 2508000 J</span>
Answer:
120,000J
Corrected question;
In one hour, coal supplies 500 000 J of energy. The wasted energy amounts to 380 000 J. How much useful energy is produced in one hour?
Explanation:
Given;
Total energy Et = 500,000 J
Wasted Energy Ew = 380,000J
The amount useful energy is the amount of energy that is available for supply.
This can be derived by subtracting the wasted energy from the total energy.
Useful energy = Total Energy - wasted energy
Eu = Et - Ew
Substituting the given values;
Eu = 500,000J - 380,000
Eu = 120,000 J
The amount of useful energy produced in one hour is 120,000 J