Answer: molecular formula = C12H16O8
Explanation:
NB Mm CO2= 44g/mol
Mm H2O= 18g/mol
Moles of CO2 = 36.86/44=0.84mol
0.84mole of CO2 has 0.84 mol of C
Moles of H2O = 10.06/18= 0.56mol
1mol of H20 contains 1mol of O and 2 mol H,
Hence there are 0.56mol O and (0.56×2)mol H
Hence the compound contains
C= 0.84 mol H= 1.12mol O=0.56mol
Divide through by smallest number
C= 0.83/0.56= 1.5mol
H= 1.12/0.55= 2mol
O= 0.56/0.56= 1mol
Multiply all by 2 to have whole number of moles = 3:4:2
Hence empirical formula= C3H4O2
(C3H4O2)n = 288.38
[(12×3) + 4+(16×2)]n= 288.38
72n=288.38
n= 4
:. Molecular formula=(C3H4O2)4= C12H16O8
hibernation exclamation mark
This means the nucleus of an atom is always positively charged
The reaction between the reactants would be:
CH₃NH₂ + HCl ↔ CH₃NH₃⁺ + Cl⁻
Let the conjugate acid undergo hydrolysis. Then, apply the ICE approach.
CH₃NH₃⁺ + H₂O → H₃O⁺ + CH₃NH₂
I 0.11 0 0
C -x +x +x
E 0.11 - x x x
Ka = [H₃O⁺][CH₃NH₂]/[CH₃NH₃⁺]
Since the given information is Kb, let's find Ka in terms of Kb.
Ka = Kw/Kb, where Kw = 10⁻¹⁴
So,
Ka = 10⁻¹⁴/5×10⁻⁴ = 2×10⁻¹¹ = [H₃O⁺][CH₃NH₂]/[CH₃NH₃⁺]
2×10⁻¹¹ = [x][x]/[0.11-x]
Solving for x,
x = 1.483×10⁻⁶ = [H₃O⁺]
Since pH = -log[H₃O⁺],
pH = -log(1.483×10⁻⁶)
<em>pH = 5.83</em>
I think it’s 24.305? Not sure