Answer:
The total number of Cl atoms in 150mL of liquid CCl4 is 3.73*10²⁴.
Explanation:
First you must determine the mass of CCL4 present in 150mL of CCl4. Density is a quantity that allows us to measure the amount of mass in a certain volume of a substance, whose expression for its calculation is the quotient between the mass of a body and the volume it occupies:

In this case, the density value of d = 1.589 g/mL. Then, being the volume equal to 150 mL, the value of the mass can be calculated as:
mass= density*volume
mass=1.589 g/mL * 150 mL
mass= 238.35 g
Now, being the molar mass of CCl4 154 g/mol, the number of moles that 238.35 g represents is calculated as:

moles= 1.55
1 mole of the compound CCl4 contains 4 moles of Cl. Then, using a simple rule of three, it is possible to calculate the number of moles of Cl that 1.55 moles of CCl4 contain:

moles of Cl= 6.2
Avogadro's Number or Avogadro's Constant is called the number of particles that make up a substance (usually atoms or molecules) and that can be found in the amount of one mole of said substance. Its value is 6.023*10²³ particles per mole. Avogadro's number applies to any substance. In this case it can be applied as follows: if 1 mole of Cl contains 6.023*10²³ atoms, 6.2 moles of Cl how many atoms does it contain?

atoms of Cl= 3.73*10²⁴
<u><em>The total number of Cl atoms in 150mL of liquid CCl4 is 3.73*10²⁴.</em></u>
<u>S</u><u>o</u><u>l</u><u>u</u><u>t</u><u>i</u><u>o</u><u>n</u><u>-</u><u>1</u><u>:</u><u>-</u>

<u>S</u><u>o</u><u>l</u><u>u</u><u>t</u><u>i</u><u>o</u><u>n</u><u>:</u><u>-</u><u>2</u>

<u>S</u><u>o</u><u>l</u><u>u</u><u>t</u><u>i</u><u>o</u><u>n</u><u>:</u><u>-</u><u>3</u>

<u>S</u><u>o</u><u>l</u><u>u</u><u>t</u><u>i</u><u>o</u><u>n</u><u>:</u><u>-</u><u>4</u>

<u>S</u><u>o</u><u>l</u><u>u</u><u>t</u><u>i</u><u>o</u><u>n</u><u>:</u><u>-</u><u>5</u>

<u>S</u><u>o</u><u>l</u><u>u</u><u>t</u><u>i</u><u>o</u><u>n</u><u>:</u><u>-</u><u>6</u>

<u>S</u><u>o</u><u>l</u><u>u</u><u>t</u><u>i</u><u>o</u><u>n</u><u>:</u><u>-</u><u>7</u>

<u>S</u><u>o</u><u>l</u><u>u</u><u>t</u><u>i</u><u>o</u><u>n</u><u>:</u><u>-</u><u>8</u>

<u>S</u><u>o</u><u>l</u><u>u</u><u>t</u><u>i</u><u>o</u><u>n</u><u>:</u><u>-</u><u>9</u>

<u>S</u><u>o</u><u>l</u><u>u</u><u>t</u><u>i</u><u>o</u><u>n</u><u>:</u><u>-</u><u>10</u>

Answer:
Part a)
Mass of m2 is given as

Part b)
Angular acceleration is given as

Part c)
Tension in the rope is given as

Explanation:
Part a)
When m1 and m2 both connected to the cylinder then the system is at rest
so we can use torque balance here




Part b)
When block m_2 is removed then system becomes unstable
so force equation of mass m1

also we have

now we have




so angular acceleration is given as



Part c)
Tension in the rope is given as



The cart will be pulled to the right by the hanging mass, so by Newton's second law, the net force on the cart is
<em>T</em> - 25 N = (8 kg) <em>a</em>
where <em>T</em> is the tension in the rope and <em>a</em> is the acceleration.
The hanging mass has a net force of
(6 kg) <em>g</em> - <em>T</em> = (6 kg) <em>a</em>
where <em>g</em> = 9.8 m/s².
Adding these equations together eliminates <em>T</em>, and we can solve for <em>a</em> :
(<em>T</em> - 25 N) + ((6 kg) <em>g</em> - <em>T </em>) = (14 kg) <em>a</em>
33.8 N = (14 kg) <em>a</em>
<em>a</em> = (33.8 N) / (14 kg) ≈ 2.4 m/s²
Then the tension in the rope is
<em>T</em> - 25 N = (8 kg) (2.4 m/s²)
<em>T</em> ≈ 25 N + 19.31 N ≈ 44 N