Well Bob would need to calculate to net force of someone going down a water slide. Since the person is going down the slide, the person will go faster, depending on their mass/weight and the gravitational pull. As phrased in Newton’s Second Law.
Newton’s Second Law:
Newton's second law of motion pertains to the behavior of objects for which all existing forces are not balanced. The second law states that the acceleration of an object is dependent upon two variables - the net force acting upon the object and the mass of the object.
Answer:
1700 Joules
Explanation:
Work=force x distance
Force = 170 kg
Distance= 10 Meters
170 x 10 = 1700 Joules of work
The initial speed of the automobile is 49.84km/hr
<u>Explanation:</u>
Given:
Acceleration, a = 1.77 m/s²
Time, t = 6s
Final speed, v = 88 km/h
v = 88 X 0.278 m/s
v = 24.464 m/s
Initial speed, u = ?
We know,
v = u + at
On substituting the value in the formula we get:
24.464 = u + (1.77 X 6)
24.464 = u + 10.62
u = 24.464 - 10.62 m/s
u = 13.844 m/s
Converting u = 13.844 m/s to km/hr
1 m/s = 3.6 km/hr
13.844 m/s = 13.844 X 3.6 km/hr
u = 49.84 km/hr
Therefore, the initial speed of the automobile is 49.84km/hr
Answer:
2.8512*10^8 inches
Explanation:
Seeing as the ratio for miles to inches is 1 mile = 63360 inches, set up an equation. 1 mile / 63360 inches = 4500 miles / x inches. Cross multiply and simplify to 2.8512*10^8 inches. Hope this helps! :)