Answer:
Option D. 4.02 kJ
Explanation:
A simple calorimetry problem
Q = m . C . ΔT
ΔT = Final T° - Initial T°
C = Specific heat capacity
m = mass
Let's replace the data
Q = 125 g . 2.42 J/g∘C . (34.8°C -21.5 °C)
Q= 4023.25 J
We must convert the answer to kJ
4023.25 J . 1kJ /1000 =4.02kJ
Answer:
If matter is heated and thus its temperature rises more and more, it can be seen that the particles contained in it move ever faster – be it the relatively free movement of the particles in gases or the oscillation around a rest position in solids. The temperature of a substance can therefore be regarded as a measure of the velocity of the particles it contains. With a higher temperature and thus higher particle
Explanation:
While the number nuclear protons as given is 34, and therefore we deal with the element selenium, there are 2 more electrons than protons, and therefore this species has an overall
2
−
charge.
We represent this selenide ion as
S
e
2
−
. Do I win 5 pounds?
Z= 34, therefore the atom is selenium
It’s soft which makes It low energy