Answer:
0.11mol/dm³
Explanation:
The reaction expression is given as:
HCl + NaOH → NaCl + H₂O
Volume of acid = 25cm³ = 0.025dm³
Volume of base = 18.4cm³ = 0.0184dm³
Concentration of base = 0.15mol/dm³
Solution:
The concentration of hydrochloric acid = ?
To solve this problem, let us first find the number of moles of the base;
Number of moles = concentration x volume
Number of moles = 0.15mol/dm³ x 0.0184dm³ = 0.00276mol
From the balanced reaction equation;
1 mole of NaOH will combine with 1 mole of HCl
Therefore, 0.00276mol of the base will combine with 0.00276mol of HCl
So;
Concentration of acid =
=
= 0.11mol/dm³
Answer:
MoClBr₂
Explanation:
First we calculate the mass of bromine in the compound:
- 300.00 g - (82.46224 g + 45.741 g) = 171.79676 g
Then we<u> calculate the number of moles of each element</u>, using their <em>respective molar masses</em>:
- 82.46224 g Mo ÷ 95.95 g/mol = 0.9594 mol Mo
- 45.741 g Cl ÷ 35.45 g/mol = 1.290 mol Cl
- 171.79676 g Br ÷79.9 g/mol = 2.150 mol Br
Now we <u>divide those numbers of moles by the lowest number among them</u>:
- 0.9594 mol Mo / 0.9594 = 1
- 1.290 mol Cl / 0.9594 = 1.34 ≅ 1
- 2.150 mol Br / 0.9594 = 2.24 ≅ 2
Meaning the empirical formula is MoClBr₂.
Answer:
Second reaction
NO2 + F -------> NO2F
Rate of reaction:
k1 [NO2] [F2]
Explanation:
NO2 + F2 -----> NO2F + F slow step1
NO2 + F -------> NO2F fast. Step 2
Since the first step is the slowest step, it is the rate determining step of the reaction
Hence:
rate = k1 [NO2] [F2]
A) releasing CO2 that dissolves and forms acid in the oceans (i think i'm sorry if its wrong)