Answer:
D = 9.9 10⁶ mi
Explanation:
In the exercise they give the expression for maximum viewing distance
D = 2 r h + h²
Ask for this distance for a height of 1100 feet
Let's calculate
D = 2 3960 1100 + 1100²
D = 8.712 10⁶ + 1.21 10⁶
D = 9.92 10⁶ mi
D = 9.9 10⁶ mi
Answer:
I'm not sure
Explanation:
I have had that question to Uchida c r go crew in to go be
Answer:
Conservation of angular momentum
Explanation:
When the objects spread in universe after big bang, because of the tremendous force , they gained angular momentum and started to rotate. Since, then the object continue to rotate on their axis because of conservation of angular momentum. In vacuum of space there no other forces that can stop these rotation, therefore, they continue to rotate.
The ball will take 2.551 seconds to reach its peak position.
<h3>How much time will the ball take to land?</h3>
We must know how long the balls are in the air before we can predict where they will fall. It will take 2 seconds for both balls to touch the ground.
<h3>How quickly does a ball drop?</h3>
The falling ball travels a distance of d = 12 9.8 (m/s2) t2, with a speed of v = 9.8 (m/s2) t as a function of time. The ball travels 4.9 m in a second. The falling ball's velocity is v = -9.8 (m/s2) t j, and its position is r = (4.9 m - 12 9.8 (m/s2) t2) j as a function of time.
To know more about balls visit:-
brainly.com/question/19930452
#SPJ4
To solve this problem it is necessary to apply the concepts related to the Force since Newton's second law, as well as the concept of Electromagnetic Force. The relationship of the two equations will allow us to find the magnetic field through the geometric relations of density and volume.

Where,
B = Magnetic Field
I = Current
L = Length
<em>Note:
is a direct adaptation of the vector relation
</em>
From Newton's second law we know that the relation of Strength and weight is determined as

Where,
m = Mass
g = Gravitational Acceleration
For there to be balance the two forces must be equal therefore

Our values are given as,
Diameter 
Radius 
Magnetic Field 
From the relationship of density another way of expressing mass would be

At the same time the volume ratio for a cylinder (the shape of the wire) would be

Replacing this two expression at our first equation we have that:



Re-arrange to find I


We have for definition that the Density of copper is
, gravity acceleration is
and the values of magnetic field (B) and the radius were previously given, then:


The current is too high to be transported which would make the case not feasible.