Complete Question
A flywheel in a motor is spinning at 510 rpm when a power failure suddenly occurs. The flywheel has mass 40.0 kg and diameter 75.0 cm . The power is off for 40.0 s , and during this time the flywheel slows down uniformly due to friction in its axle bearings. During the time the power is off, the flywheel makes 210 complete revolutions. At what rate is the flywheel spinning when the power comes back on(in rpm)? How long after the beginning of the power failure would it have taken the flywheel to stop if the power had not come back on, and how many revolutions would the wheel have made during this time?
Answer:

Explanation:
From the question we are told that:
Angular velocity 
Mass 
Diameter d 
Off Time 
Oscillation at Power off 
Generally the equation for Angular displacement is mathematically given by




Generally the equation for Time to come to rest is mathematically given by



Therefore Angular displacement is


Answer:
Option 3: -48 cm
Explanation:
We are given:
refractive index; n = 1.5
radius of curvature; r2 = 24 cm
Formula for the focal length is given as;
1/f = (n - 1) × [(1/r1) - (1/r2)]
As r1 tends to infinity, 1/r1 = 0
Thus,we now have;
1/f = (n - 1) × (-1/r2)
Plugging in the relevant values;
1/f = (1.5 - 1) × (-1/24)
1/f = -0.02083333333
f = -1/0.02083333333
f = -48 cm
Answer:
Efficiency = 80%
Explanation:
Given the following data;
Work output = 240 N
Work Input = 300 N
To find the mechanical efficiency of a machine;
Substituting into the equation, we have;

Efficiency = 80%
Therefore, the mechanical efficiency of the machine is 80 percent.
The added weight of the sand puts more downward pressure on the wheels contacting the rails, which would cause the trains speed to decrease.