Initial velocity, u = 4 m/s
acceleration due to gusts of wind = 3 m/s^2
time, t = 1 min = 60 s
Let distance travelled = S
From equation of motion,

Thus, the boat would have traveled 5640m after gusts picked up.
Answer:
rolling ball down a hill
Explanation:
A rolling ball has kinetic energy
D kinetic energy✨
nnnnnnnnnnnnbbbhhbbbbbbb
Stars having less mass collapses early than those with more mass. This can be explained by Einstein's equation E=mc².
According to this equation, mass of stars is converted into light due to thermonuclear reactions occuring in the core of star which acts as engine of the stars. This thermonuclear reactions keeps star alive. Thermonuclear reactions occurs slowly in massive stars hence massive stars live more than light stars.
When acceleration is constant, the average velocity is given by

where
and
are the final and initial velocities, respectively. By definition, we also have that the average velocity is given by

where
are the final/initial displacements, and
are the final/initial times, respectively.
Take the car's starting position to be at
. Then

So we have

You also could have first found the acceleration using the equation

then solve for
via

but that would have involved a bit more work, and it turns out we didn't need to know the precise value of
anyway.