Answer:
1 kg⋅m⋅s−2
Explanation:
I cant really explain it, but thata the answer
The distance traveled by the wood after the bullet emerges is 0.16 m.
The given parameters;
- <em>mass of the bullet, m = 23 g = 0.023 g</em>
- <em>speed of the bullet, u = 230 m/s</em>
- <em>mass of the wood, m = 2 kg</em>
- <em>final speed of the bullet, v = 170 m/s</em>
- <em>coefficient of friction, μ = 0.15</em>
The final velocity of the wood after the bullet hits is calculated as follows;

The acceleration of the wood is calculated as follows;

The distance traveled by the wood after the bullet emerges is calculated as follows;

Thus, the distance traveled by the wood after the bullet emerges is 0.16 m.
Learn more here:brainly.com/question/15244782
Answer:
22m/s
Explanation:
To find the velocity we employ the equation of free fall: v²=u²+2gh
where u is initial velocity, g is acceleration due to gravity h is the height, v is the velocity the moment it hits the ground, taking the direction towards gravity as positive.
Substituting for the values in the question we get:
v²=2×9.8m/s²×25m
v²=490m²/s²
v=22.14m/s which can be approximated to 22m/s
Answer:
A=1
B=-2
Explanation:
Part A and B of the question wasn't given, however, I attached the relevant parts to solve this question as follows.
From part B as attached, it shows that the right option is C which is
2A+3B=-4
Substituting B with 3A-5 then we form the second equation as shown
2A+3(3A-5)=-4
By simplifying the above equation, we obtain
2A+9A-15=-4
Re-arranging, then
11A=-4+15
Finally
11A=11
A=1
To obtain B, we already know that 3A-5 so substituting the value of A into the above then we obtain
B=3(1)-5=-2
Therefore, required values are 1 and -2