Answer: 0.392 m/s
Explanation:
The Doppler shift equation is:

Where:
is the actual frequency of the sound wave
is the "observed" frequency
is the speed of sound
is the velocity of the observer, which is stationary
is the velocity of the source, which are the red blood cells
Isolating
:


Finally:

Answer:

Explanation:
From the question we are told that:
Height of window 
Height of window off the ground 
Time to fall and drop
Generally the Newton's equation motion is mathematically given by

Where



Generally the Newton's equation motion is mathematically given by

Where





Therefore the ball’s initial speed

Answer:
Total momentum = 50kgm/s
Explanation:
<u>Given the following data;</u>
Mass, M1 = 5kg
Mass, M2 = 7kg
Velocity, V1 = 10m/s
Velocity, V2 = 0m/s (since it's at rest).
To find the total momentum;
Momentum can be defined as the multiplication (product) of the mass possessed by an object and its velocity. Momentum is considered to be a vector quantity because it has both magnitude and direction.
Mathematically, momentum is given by the formula;
The law of conservation of momentum states that the total linear momentum of any closed system would always remain constant with respect to time.
Total momentum = M1V1 + M2V2
Substituting into the equation, we have;
Total momentum = 5*10 + 7*0
Total momentum = 50 + 0
<em>Total momentum = 50 kgm/s</em>
<em>Therefore, the total momentum of the bowling ball and the putty after they collide is 50 kgm/s. </em>
The recoil velocity of cannon is (4) 5.0 m/s
Explanation:
We can find the recoil velocity from the law of conservation of momentum.
The recoil velocity is velocity of body 2 after release of body 1, i.e. velocity of cannon after release of clown.
Let v2 be cannon's velocity, v1 be clown's velocity given = 15 m/sec
m1 be clown's mass = 100kg and m2 be cannon's mass given = 500kg.
So recoil velocity of cannon v2 is given by,
v2 = -(m1÷m2)v1
v2 = -(100÷500)15
v2 = -5 m/s
where the minus sign refers to the direction of cannon's recoil velocity being opposite to that of clown.
Hence, option (4)5.0 m/s is the correct answer.