Answer:
T’= 4/3 T
The new tension is 4/3 = 1.33 of the previous tension the answer e
Explanation:
For this problem let's use Newton's second law applied to each body
Body A
X axis
T = m_A a
Axis y
N- W_A = 0
Body B
Vertical axis
W_B - T = m_B a
In the reference system we have selected the direction to the right as positive, therefore the downward movement is also positive. The acceleration of the two bodies must be the same so that the rope cannot tension
We write the equations
T = m_A a
W_B –T = M_B a
We solve this system of equations
m_B g = (m_A + m_B) a
a = m_B / (m_A + m_B) g
In this initial case
m_A = M
m_B = M
a = M / (1 + 1) M g
a = ½ g
Let's find the tension
T = m_A a
T = M ½ g
T = ½ M g
Now we change the mass of the second block
m_B = 2M
a = 2M / (1 + 2) M g
a = 2/3 g
We seek tension for this case
T’= m_A a
T’= M 2/3 g
Let's look for the relationship between the tensions of the two cases
T’/ T = 2/3 M g / (½ M g)
T’/ T = 4/3
T’= 4/3 T
The new tension is 4/3 = 1.33 of the previous tension the answer e
The momentum of the second ball was 15 kg.m/s.
<h3>What is inelastic collision?</h3>
In which collision some amount of kinetic energy of the system is lost that called inelastic collision. In purely inelastic collision, two bodies stick together. But principle of conservation of linear momentum is obeyed.
In the given question,
Two balls collide and after collision, the final momentum of the system = 18 kg.m/s.
Initial velocity of 1st ball of mass 3 kg is 1 m/s.
So, Initial momentum of first ball = mass × velocity = (3 kg) × (1 m/s) = 3 kg.m/s.
According to Principle of conservation of linear momentum for this inelastic collision,
Initial momentum of first ball + initial momentum of second ball = final momentum of the system
⇒ initial momentum of second ball = final momentum of the system - Initial momentum of first ball
= 18 kg.m/s - 3 kg.m/s.
= 15 kg.m/s.
Hence, initial momentum of second ball = 15 kg.m/s.
Learn more about momentum here:
brainly.com/question/24030570
#SPJ2
Answer:
He is incorrect. Dissolving salt in water and evaporation of the water are both physical changes. The reappearance of salt is evidence that the change was reversible by a physical change, so it could not be a chemical change.
Wild Oat Seeds is the answer (according to answers website)