Answer:
it is a base because they accept H+ ions
Explanation:
Answer:
1040%
Explanation:
To solve this question we must convert the mass of Iron to moles in order to find limiting reactant. With limiting reactant we can find the theoretical moles of hydrogen and theoretical mass:
Percent yield = Actual yield (5.40g) / Theoretical yield * 100
<em>Moles Fe -Molar mass: 55.845g/mol-:</em>
10.3g * (1mol / 55.845g) = 0.184 moles of Fe will react.
For a complete reaction of these moles there are necessaries:
0.184 moles Fe* ( 3 mol H2SO4 / 2 mol Fe) = 0.277 moles H2SO4.
As there are 14.8 moles of the acid, <em>Fe is limiting reasctant.</em>
The moles of H2 produced are:
0.184 moles Fe* ( 3 mol H2 / 2 mol Fe) = 0.277 moles H2
The mass is:
0.277 moles H2 * (2.016g/mol) = 0.558g H2
Percent yield is:
5.40g / 0.558g * 100 = 1040%
It is possible the experiment wasn't performed correctly
Answer:
Q = 1267720 J
Explanation:
∴ QH2O = mCpΔT
∴ m H2O = 500 g
∴ Cp H2O = 4.186 J/g°C = 4.183 E-3 KJ/g°C
∴ ΔT = 120 - 50 = 70°C
⇒ QH2O = (500 g)(4.183 E-3 KJ/g°C)(70°C) = 146.51 KJ
∴ ΔHv H2O = 40.7 KJ/mol
moles H2O:
∴ mm H2O = 18.015 g/mol
⇒ moles H2O = (500 g)(mol/18.015 g) = 27.548 mol H2O
⇒ ΔHv H2O = (40.7 KJ/mol)(27.548 mol) = 1121.21 KJ
⇒ Qt = 146.51 KJ + 1121.21 KJ = 1267.72 KJ = 1267720 J
Answer:
The answer to your question is 8.74 g of He
Explanation:
Data
V = 2.4 x 10² L
P = 99 kPa
T = 0°C
mass = ?
Process
1.- Convert kPa to atm
P = 99 kPa = 99000 Pa
1 atm --------------- 101325 Pa
x --------------- 99000 Pa
x = (99000 x 1) / 101325
x = 0.977 atm
2.- Convert temperature to °K
°K = 273 + 0
°K = 273
3.- Substitution
PV = nRT
- Solve for n
n = PV / RT
n = (0.977)(2.4 x 10²) / (0.082)(273)
n = 24.48 / 22.386
n = 1.093 moles
4.- Calculate the grams of He
8 g -------------------- 1 mol
x -------------------- 1.093 moles
x = (1.093 x 8) / 1
x = 8.74 g