An alloy is the solid solution of a metal or non-metal dissolved in a metal.
Metal is a great conductor of heat while rope does not collect heat from the radiation from the sun as much or contain it while if metal is out in the sun all day it just keeps getting hotter and hotter and when you touch the rope it does not have much heat to transfer but the metal slide is hot enough to irritate your skin
<span />
<span>Heat would make the molecules move faster so they would spread out therefore making air less dense.
Less dense means less packed. Heat increase the kinetic energy</span>
This problem is describing a gas mixture whose mole fraction of hexane in nitrogen is 0.58 and which is being fed to a condenser at 75 °C and 3.0 atm, obtaining a product at 3.0 atm and 20 °C, so that the removed heat from the system is required.
In this case, it is recommended to write the enthalpy for each substance as follows:

Whereas the specific heat of liquid and gaseous n-hexane are about 200 J/(mol*K) and 160 J/(mol*K) respectively, its condensation enthalpy is 31.5 kJ/mol, boiling point is 69 °C and the specific heat of gaseous nitrogen is about 29.1 J/(mol*K) according to the NIST data tables and
and
are the mole fractions in the gaseous mixture. Next, we proceed to the calculation of both heat terms as shown below:

It is seen that the heat released by the nitrogen is neglectable in comparison to n-hexanes, however, a rigorous calculation is being presented. Then, we add the previously calculated enthalpies to compute the amount of heat that is removed by the condenser:

Finally we convert this result to kJ:

Learn more:
Answer:

Explanation:
This reaction type is a single replacement. The format of a single replacement is:

A= Al
B= Ni
C= SO
The coefficient 3 for Ni would become a subscript for AC. After you plug those into the reaction you need to count how many of each are on the left side and try to get the same number on the right side. Both sides must be equal to have a balanced equation.