
Here we go ~
1 mole of
has 6.022 × 10²³ molecules of the given compound.
So, 0.78 mole of
will have ~


Answer:
a. is released in the process
Explanation:
In fusion reaction the nucleus is unstable so it releases its binding energy resulting in decreasing its mass so it becomes more stable.
Answer:
d. 8 moles of H2O on the product side
Explanation:
Hello,
In this case, we need to balance the given redox reaction in acidic media as shown below:
![MnO_4^{1-} (aq) + Cl^{1-} (aq) \rightarrow Mn^{2+} (aq) + Cl_2 (g)\\\\(Mn^{7+}O^{2-}_4)^{1-} (aq) + Cl^{1-} (aq) \rightarrow Mn^{2+} (aq) + Cl_2 (g)\\\\\\\\(Mn^{7+}O^{2-}_4)^{1-} (aq)+8H^++5e^- \rightarrow Mn^{2+}+4H_2O\\\\2Cl^{1-}\rightarrow Cl_2^0+2e^-\\\\2*[(Mn^{7+}O^{2-}_4)^{1-} (aq)+8H^++5e^- \rightarrow Mn^{2+}+4H_2O]\\\\5*[2Cl^{1-}\rightarrow Cl_2^0+2e^-]\\\\\\\\2(Mn^{7+}O^{2-}_4)^{1-} (aq)+16H^++10e^- \rightarrow 2Mn^{2+}+8H_2O\\\\10Cl^{1-}\rightarrow 5Cl_2^0+10e^-\\](https://tex.z-dn.net/?f=MnO_4%5E%7B1-%7D%20%28aq%29%20%2B%20Cl%5E%7B1-%7D%20%28aq%29%20%5Crightarrow%20%20Mn%5E%7B2%2B%7D%20%28aq%29%20%2B%20Cl_2%20%28g%29%5C%5C%5C%5C%28Mn%5E%7B7%2B%7DO%5E%7B2-%7D_4%29%5E%7B1-%7D%20%28aq%29%20%2B%20Cl%5E%7B1-%7D%20%28aq%29%20%5Crightarrow%20%20Mn%5E%7B2%2B%7D%20%28aq%29%20%2B%20Cl_2%20%28g%29%5C%5C%5C%5C%5C%5C%5C%5C%28Mn%5E%7B7%2B%7DO%5E%7B2-%7D_4%29%5E%7B1-%7D%20%28aq%29%2B8H%5E%2B%2B5e%5E-%20%5Crightarrow%20Mn%5E%7B2%2B%7D%2B4H_2O%5C%5C%5C%5C2Cl%5E%7B1-%7D%5Crightarrow%20Cl_2%5E0%2B2e%5E-%5C%5C%5C%5C2%2A%5B%28Mn%5E%7B7%2B%7DO%5E%7B2-%7D_4%29%5E%7B1-%7D%20%28aq%29%2B8H%5E%2B%2B5e%5E-%20%5Crightarrow%20Mn%5E%7B2%2B%7D%2B4H_2O%5D%5C%5C%5C%5C5%2A%5B2Cl%5E%7B1-%7D%5Crightarrow%20Cl_2%5E0%2B2e%5E-%5D%5C%5C%5C%5C%5C%5C%5C%5C2%28Mn%5E%7B7%2B%7DO%5E%7B2-%7D_4%29%5E%7B1-%7D%20%28aq%29%2B16H%5E%2B%2B10e%5E-%20%5Crightarrow%202Mn%5E%7B2%2B%7D%2B8H_2O%5C%5C%5C%5C10Cl%5E%7B1-%7D%5Crightarrow%205Cl_2%5E0%2B10e%5E-%5C%5C)
Then, we add the half reactions:

Thereby, we can see d. 8 moles of H2O on the product side.
Best regards.
Answer:
0.0457 M
Explanation:
The reaction that takes place is:
- 2HBr + Ca(OH)₂ → CaBr₂ + 2H₂O
First we<u> calculate how many moles of acid reacted</u>, using the <em>HBr solution's concentration and volume</em>:
- Molarity = Moles / Volume
- Molarity * Volume = Moles
- 0.112 M * 12.4 mL = 1.389 mmol HBr
Now we <u>convert HBr moles to Ca(OH)₂ moles</u>, using the stoichiometric ratio:
- 1.389 mmol HBr *
= 0.6944 mmol Ca(OH)₂
Finally we <u>calculate the molarity of the Ca(OH)₂ solution</u>, using the <em>given volume and calculated moles</em>:
- 0.6944 mmol Ca(OH)₂ / 15.2 mL = 0.0457 M
Answer:

Explanation:
Hello!
In this case, since the study of the bond energy allows us to compute the enthalpies of some reactions, for this combination reaction by which ammonia is yielded, we understand the enthalpy of reaction equals the enthalpy of formation of ammonia, and, in terms of the bonds energy we can write:

Whereas the bonds enthalpy of those bonds that get broken cover the N≡N and the three H-H bonds at the reactants side and the enthalpy of those bonds that are formed cover the six N-H bonds at the products; which means we obtain:

Which differs from the theoretical value that is -46 kJ/mol.
Best regards!