Answer:
Explanation:
a) In an exothermic reaction, the energy transferred to the surroundings from forming new bonds is ___more____ than the energy needed to break existing bonds.
b) In an endothermic reaction, the energy transferred to the surroundings from forming new bonds is ___less____ than the energy needed to break existing bonds.
c) The energy change of an exothermic reaction has a _____negative_______ sign.
d) The energy change of an endothermic reaction has a ____positive________ sign.
The energy changes occur during the bonds formation and bonds breaking.
There are two types of reaction endothermic and exothermic reaction.
Endothermic reactions:
The type of reactions in which energy is absorbed are called endothermic reactions.
In this type of reaction energy needed to break the bond are higher than the energy released during bond formation.
For example:
C + H₂O → CO + H₂
ΔH = +131 kj/mol
it can be written as,
C + H₂O + 131 kj/mol → CO + H₂
Exothermic reaction:
The type of reactions in which energy is released are called exothermic reactions.
In this type of reaction energy needed to break the bonds are less than the energy released during the bond formation.
For example:
Chemical equation:
C + O₂ → CO₂
ΔH = -393 Kj/mol
it can be written as,
C + O₂ → CO₂ + 393 Kj/mol
Answer:
Atoms=9.033*10^23 atoms
Explanation:
Atoms=no.of miles*Avogadro's no.
Atoms=1.5*6.022*10^23
Atoms=9.033*10^23 atoms
Answer:
D) CN⁻
Explanation:
Hund's Rule of Maximum Multiplicity state that electrons go into degenerate orbitals of sub-levels (p,d, and f ) singly before pairing commences. Hund's rule is useful in determining the number of unpaired electrons in an atom. As such, it explains some magnetic properties of elements.
An element whose atoms or molecules contain unpaired electrons is paramagnetic. i.e., weakly attracted to substances in a magnetic field.
On the other hand, the element whose atoms or molecules are filled up with paired electrons is known as diamagnetic, i.e., not attracted by magnetic substances.
According to the molecular orbital theory, the diamagnetic molecule is CN⁻ because of the absence of unpaired electrons.
D is the correct answer......
hope it help, please thank me if it did.....