Answer:
0.117 m
Explanation:
First of all, we can find the wavelength of the wave in the problem, by using the wave equation:

where:
v = 350 m/s is the speed of the wave
f = 500 Hz is the frequency of the wave
is the wavelength
Solving for
,

This means that the distance between two consecutive points of the wave having a difference of phase of

is 0.7 m.
Here we want to find the distance between two points that have a difference of phase of

So, we can set up the following rule of three:

where d' is the distance we are looking for. Solving for d',

Answer:
a principle stating that energy cannot be created or destroyed, but can be altered from one form to another.
Explanation:
Answer:
Interneurons
Explanation:
An interneuron or integrative neuron is a central nervous system neuron, usually small and short axon, that interconnects with other neurons; but never with sensory receptors or muscle fibers, allowing more complex functions.
The interneuron, also called the association neuron, has the function of analyzing sensory information and storing part of it. It also acts on reflex acts, transforming a stimulus in response at the level of the spinal cord. They are located between sensory and motor neurons and are located in the upper nerve centers. Interneurons are multipolar neurons, which connect afferent neurons with efferent neurons in the neuronal or nerve tracts. In other words, they function as a communicational bridge, intercommunicating sensory neurons with motor neurons. Like motor cells, interneurons are only found in the central nervous system. In contrast to the peripheral nervous system, all CNS neurons appear to be interneurons, as they are in communication with many other neurons. However, the term "interneuron" refers to neurons that have axon and dendritic extensions of local extension and not distant, that is, short.
Answer:
P=4801.5
Explanation:
Given :
work done = W = 100,832 J
time = 21.0 sec
Find:
P = ?
Formula:
P = W/t
Solution:
P = W/t
P = 100,832/21.0
= 4801.52 J/s or Watts
Answer:
The dart with the small mass will travel the farthest distance.
Explanation:
Acceleration is proportional to force times mass, and inertia is proportional to mass. Inertia is the reluctance of a moving body to stop, and a stationary body to start moving (inertia increses with mass). Assuming they both have the same aerodynamic design, and that they are both launched with the same force applied for the same time duration, the dart with less small mass will accelerate faster than the big mass dart. From this we can see that the small dart will have covered a longer distance before the effect of the force stops, when compared to the more massive dart.