For t1:
t1 = square root of 2h1 / g = square root of 2 * 0.5 / 9.8 = 0.319 sec
For t2:
t2 = sqaure root of 2h2 / g = square root of 2 * 1.0 / 9.8 = 0.451 sec
Wherein:
t = time(s) for the vertical movement
h= height
g = gravity (using the standard 9.8 m/sec measurement)
d1 = 1*0.319 = 0.319 m
d2 = 0.5 * 0.451 = 0.225 m
Where:
d = hor. distance
ratio = d1:d2
= 0.319 : 0.225
=3.19 : 2.25
The answer is 3.19 : 2.25
Answer:
80 Ω.
Explanation:
In this circuit the resistances are in series.The equivalent resistance of a series circuit is equal to the sum of the resistances. Req= 60 + 20 = 80 Ω.
Answer:43.34 m
Explanation:
Given
acceleration(a)
Initial Velocity(u)=0 m/s
After 6 s fuel runs out
Velocity after 6 s
v=u+at

After this object will start moving under gravity
height reached in first 6 s


s=36 m
After fuel run out distance traveled in upward direction is

here v=0
u=12 m/s




Cover your cough
Wash your hands
Keep a clean space
Avoid smoking
Stay active
Hope this helps :)
Answer:
The magnitude of the average angular acceleration of the disk is
.
Explanation:
Given that,
Angular velocity, 
The disk comes to rest, 
Time, t = 0.234 s
We need to find the magnitude of the average angular acceleration of the disk. It is given by change in angular velocity per unit time. So,

So, the magnitude of the average angular acceleration of the disk is
.