Answer:
This snip might help...it depends :)
Explanation:
Answer:
The molar mass of a substance is defined as the mass in grams of 1 mole of that substance. One mole of isotopically pure carbon-12 has a mass of 12 g. ... That is, the molar mass of a substance is the mass (in grams per mole) of 6.022 × 1023 atoms, molecules, or formula units of that substance.
Explanation:
Answer: Hope this helps
<h3>
Explanation: <u><em>
The fertilized egg zygote divides repeatedly as it moves down the fallopian tube to the uterus. First, the zygote becomes a solid ball of cells. ... Inside the uterus, the blastocyst implants in the wall of the uterus, where it develops into an embryo attached to a placenta and surrounded by fluid-filled membranes.</em></u></h3><h3><u><em /></u></h3>
Answer:
0.071L
Explanation:
From the question given, we obtained the following data:
Molarity of HCl = 2.25 M
Mass of HCl = 5.80g
Molar Mass of HCl = 36.45g/mol
Number of mole of HCl =?
Number of mole = Mass /Molar Mass
Number of mole of HCl = 5.8/36.45 = 0.159mole
Now, we can obtain the volume required as follows:
Molarity = mole /Volume
Volume = mole /Molarity
Volume = 0.159mole/ 2.25
Volume = 0.071L
Answer:
V2= 1.03L
Explanation:
Start off with what you are given.
V^1: 1.00L
T^1: 23°C
V^2?
T^2: 33°C
If you know your gas laws, you have to utilise a certain gas law called Charles' Law:
V^1/T^1 = V^2/T^2
Remember to convert Celsius values to Kelvin whenever you are dealing with gas problems. This can be done by adding 273 to whatever value in Celsius you have.
(23+273 = 296) (33+273 = 306)
Multiply crisscross
1.00/296= V^2/306
296V^2 = 306
Dividing both sides by 296 to isolate V2, we get
306/296 = 1.0337837837837837837837837837838
V2= 1.03L