C=10⁻⁶ mol/L
pH=14-pOH
pOH=-lg[OH⁻]
pH=14+lg10⁻⁶=14-6=8
B. pH = 8
Answer ; The question is missing in some details, but here are he details ;
The two naturally occurring isotopes of bromine are
81Br (80.916 amu, 49.31%) and
79Br (78.918 amu, 50.69%).
The two naturally occurring isotopes of chlorine are
37Cl (36.966 amu, 24.23%) and
35Cl (34.969 amu, 75.77%).
Bromine and chlorine combine to form bromine monochloride, BrCl.
Explanation:
The detaile calculation is as shown in the attachment.
Answer:
Explanation:
Method 1 proportion
1 mole of chromium is 52 grams
11.9 moles = x grams
1/11.9 = 52/x Cross multiply
x = 11.9 * 52
x = 618.8 grams
Now I have used an approximate mass for Chromium. The answer you get here is expected to reflect the weigth given on your periodic table Use that to get your answer. You should give a number very close to mine. Round to 3 places as in 619.
Method Two Formula
mols = given mass / molecular mass
11.9 = given mass / 51.9961 Multiply both sides by 51.9961
11.9 *51.9961 = given mass
given mass = 618.75
given mass = 619
Answer:
17.1 mol
Explanation:
(8.68g/mL * 125 mL) = 1085 g
1085 g/ (63.55 g/mol) = 17.1 mol
ANSWER: C) Law of Conservation of Mass
EXPLANATION: In the given cycle, it is seen that th sediments are layered and gets compressed into sedimentary rocks which eventually gets heated and compressed to form metamorphic rocks. But, the total amount of minerals present in the sediments remains the same throughout any stage of the cycle.
This proves the law of conservation of mass which states that mass can not be created nor be destroyed, it can only be transferred from one form to another. So, in this case, only phase transition occurred but the component which is mineral inside the sediments remains constant.
Therefore, the answer is law of conservation of mass.