1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
DochEvi [55]
3 years ago
10

An object is dropped from rest and falls through height h. It travels 0.5h in the last 1 second of fall. Find the total time &am

p; height of the fall. (Hint: use two triangles!)
Physics
1 answer:
STALIN [3.7K]3 years ago
4 0

Answer:

3.41 s

114 m

Explanation:

The object is falling in free fall, accelerated by the surface gravity of Earth. We can use the equation for position under constant acceleration:

X(t) = X0 + V0 * t + 1/2 * a * t^2

We set up a frame of reference with the origin at the point the object was released and the X axis pointing down. Then X0 = 0. Since the problem doesnt mention an initial speed we assume V0 = 0.

It travels 0.5h in the last 1 second of the fall. This means it also traveled in the rest of the time of the fall. t = t1 is the moment when it traveled 0.5*h.

0.5*h = 1/2 * a * t1^2

h = a * t1^2

It travels 0.5*h in 1 second.

h = X(t1 + 1) = 1/2 * a * (t1+1)^2

Equating both equations:

a * t1^2 = 1/2 * a * (t1+1)^2

We simplify a and expand the square

t1^2 = 1/2 * (t1^2 + 2*t1 + 1)

t1^2 - 1/2 * t1^2 - t1 - 1/2 = 0

1/2 * t1^2 - t1 - 1/2 = 0

Solving electronically:

t1 = 2.41 s

total time = t1 + 1 = 3.41.

Now

h = a * t1^2

h = 9.81 * 3.41^2 = 114 m

You might be interested in
Which wavelength of light is capable of penetrating the dust of a nebula?
ivann1987 [24]
When the dust is too thick to penetrate with visible light, such as the Nebula, Radio Waves are used to penetrate the dust. Longer radio waves can completely penetrate the thick cloud cover, allowing scientists to beam radar waves.
8 0
3 years ago
What does the term "speed" describe?
Blababa [14]
The cyclist who travels 20 kilometers per hour for 15 kilometers
7 0
3 years ago
Assume that a satellite orbits mars 150km above its surface. Given that the mass of mars is 6.485 X 10^23kg, and the radius of m
Kisachek [45]
<span>3598 seconds The orbital period of a satellite is u=GM p = sqrt((4*pi/u)*a^3) Where p = period u = standard gravitational parameter which is GM (gravitational constant multiplied by planet mass). This is a much better figure to use than GM because we know u to a higher level of precision than we know either G or M. After all, we can calculate it from observations of satellites. To illustrate the difference, we know GM for Mars to within 7 significant figures. However, we only know G to within 4 digits. a = semi-major axis of orbit. Since we haven't been given u, but instead have been given the much more inferior value of M, let's calculate u from the gravitational constant and M. So u = 6.674x10^-11 m^3/(kg s^2) * 6.485x10^23 kg = 4.3281x10^13 m^3/s^2 The semi-major axis of the orbit is the altitude of the satellite plus the radius of the planet. So 150000 m + 3.396x10^6 m = 3.546x10^6 m Substitute the known values into the equation for the period. So p = sqrt((4 * pi / u) * a^3) p = sqrt((4 * 3.14159 / 4.3281x10^13 m^3/s^2) * (3.546x10^6 m)^3) p = sqrt((12.56636 / 4.3281x10^13 m^3/s^2) * 4.458782x10^19 m^3) p = sqrt(2.9034357x10^-13 s^2/m^3 * 4.458782x10^19 m^3) p = sqrt(1.2945785x10^7 s^2) p = 3598.025212 s Rounding to 4 significant figures, gives us 3598 seconds.</span>
8 0
3 years ago
Match each description to its written source.
madreJ [45]
1=6, 2=8
I hope this helped

3 0
3 years ago
Pretend you (80 kg) are making repairs on the outside of the International Space Station. You are floating 20 meters away from t
djyliett [7]

Answer:

32 seconds

Explanation:

m1 = 80 kg

m2 = 10 kg

v2 = 5m/s

According to the property of conservation of momentum, assuming that both you and the bag are stationary before the safety rope comes lose:

m_{1} v_{1} =m_{2} v_{2} \\80v_{1} =10*5 \\v_{1} = 0.625\ m/s

Since the space station is 20 meters away, the time taken to reach it is given by:

t = \frac{20}{0.625}\\t=32\ s

It takes you 32 seconds to reach the station.

7 0
3 years ago
Other questions:
  • In which state of matter do the particles spread apart and fill all the space available to them?
    6·2 answers
  • How are chargeable cells different from ordinary dry cells​
    13·1 answer
  • How much work is done when a hoist lifts a 290-kg rock to a height of 7 m?
    8·1 answer
  • it is about 384,750 kilometers from earth to the moon. it took the apollo astronauts about 2 days and 19.5 hours to fly to the m
    11·2 answers
  • Calculate ideal work (in J) when a single stream of 1 mole of air is heated and expanded from 25 C and 1 bar to 100 C and 0.5 ba
    10·1 answer
  • The Cosmoclock 21 Ferris wheel in Yokohama City, Japan, has a diameter of 100 m. Its name comes from its 60 arms, each of which
    9·1 answer
  • What quantity resists change in motion
    6·1 answer
  • After the switch in is closed on point a, there is current i through resistance r. gives the current for four sets of values of
    9·1 answer
  • What advice would a personal trainer give you before a workout?
    7·2 answers
  • Which is an example of a mixture?
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!