1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
vfiekz [6]
3 years ago
13

Mass = 10Kg velocity = 5m/s what is the kinetic energy = ? Joules

Physics
2 answers:
nirvana33 [79]3 years ago
5 0

Answer:

Hello There!!

Explanation:

You use the formula:K.E. = 1/2 m v2.

kinetic energy=1 / 2 × 10 × 5 ²(the power of 2 means you multiply the number by itself)

half of 10 is 5 so you do 5×5².

kinetic energy=5×5²=(5×5=25) so 25×5=125 Joules.

hope this helps,have a great day!!

~Pinky~

alexdok [17]3 years ago
3 0

Answer:

kinetic energy = 1 / 2 mv²

kinetic energy = 1 / 2 × 10 × 5 ²

kinetic energy = 5 × 25

kinetic energy = 125 joules

..........

You might be interested in
A vertical wire carries a current straight down. To the east of this wire, the magnetic field points: A) toward the east. B) tow
geniusboy [140]

Answer:

option E

Explanation:

the correct answer is option E

the direction of magnetic field will be found out with the help of right hand rule.

Put you palm in the direction of electric field and curl your finger in the direction of magnetic field which east direction.

 now, the direction shown by the thumb will be the direction of magnetic field  which comes out to be toward South direction.

6 0
3 years ago
Read 2 more answers
A dime is placed in front of a concave mirror that has a radius of curvature R = 0.40 m. The image of the dime is inverted and t
andrew11 [14]

Answer:

distance between the dime and the mirror, u = 0.30 m

Given:

Radius of curvature, r = 0.40 m

magnification, m = - 2 (since,inverted image)

Solution:

Focal length is half the radius of curvature, f = \frac{r}{2}

f = \frac{0.40}{2} = 0.20 m

Now,

m = - \frac{v}{u}

- 2 = -\frac{v}{u}

\frac{v}{u} = 2                  (2)

Now, by lens maker formula:

\frac{1}{f} = \frac{1}{u} + \frac{1}{v}

\frac{1}{v} = \frac{1}{f} - \frac{1}{u}

v = \frac{uf}{u - f}            (3)

From eqn (2):

v = 2u

put v = 2u in eqn (3):

2u = \frac{uf}{u - f}

2 = \frac{f}{u - f}

2(u - 0.20) = 0.20

u = 0.30 m

6 0
3 years ago
The surface is tilted to an angle of 37 degrees from the horizontal, as shown above in Figure 3. The blocks are each given a pus
hoa [83]

Answer:

Incomplete question: "Each block has a mass of 0.2 kg"

The speed of the two-block system's center of mass just before the blocks collide is 2.9489 m/s

Explanation:

Given data:

θ = angle of the surface = 37°

m = mass of each block = 0.2 kg

v = speed = 0.35 m/s

t = time to collision = 0.5 s

Question: What is the speed of the two-block system's center of mass just before the blocks collide, vf = ?

Change in momentum:

delta(P)=F*delta(t)

P_{f} -P_{i}=F*delta(t)

2m(v_{f} -v_{i})=F*delta(t)

v_{i} =0.35-0.35=0

It is neccesary calculate the force:

F=(m+m)*g*sin\theta

Here, g = gravity = 9.8 m/s²

F=(0.2+0.2)*9.8*sin37=2.3591N

v_{f} =\frac{F*delta(t)}{2m} =\frac{2.3591*0.5}{2*0.2} =2.9489m/s

6 0
3 years ago
Describe the energy transformation in a flashlight
anastassius [24]

Answer: When the flashlight is turned on, the chemical energy stored in batteries is converted into electrical energy that flows through wires of flashlight. This electrical energy is then transformed into light and heat energies.

Explanation:

4 0
3 years ago
A student sits on a rotating stool holding two 3.09-kg masses. When his arms are extended horizontally, the masses are 1.08 m fr
schepotkina [342]

Answer:

a

The New angular speed is  w_f = 2.034 rad/s

b

The Kinetic energy before the masses are pulled in is  KE_i = 3.101 \ J

c

The Kinetic energy after the masses are pulled in is   KE_f = 8.192 \ J

Explanation:

From the we are told that masses are 1.08 m from the axis of rotation, this means that

             The radius r =1.08m

              The  mass is m = 3.09\  kg

              The  angular speed w = 0.770 \ rad/sec

  The moment of inertia of the system excluding the two mass I = 3.25 \ kg \cdot m^2

           New radius  r_{new} = 0.34m

             

Generally the conservation of angular momentum can be mathematical represented as

                         w_f = [\frac{I_i}{I_f} ]w_i .....(1)

Where w_f is the final angular speed

           w_i is the initial  angular speed

          I_i is the initial moment of inertia

           I_f is the final moment of inertia

Moment of inertia is mathematically represented as

                       I = m r^2

Where I is the moment of inertia

          m is the mass

           r is the radius

So the Initial moment of inertia is given as  

     I_i = moment \ of \  inertia \ of\  the  \ two \  mass \ + 3.25 \ kg \cdot m^2

     I_i = 2m r^2 + 3.25

The multiplication by is because we are considering two masses

    I_i = 2 [(3.09)(1.08)^2] +3.25 = 10.46 kg \cdot m^2

So the final  moment of inertia is given as  

     I_f = 2[(3.09)(0.34)^2] +3.25 = 3.96 \ kg \cdot m^2      

Substituting these values into equation 1

         w_f = [\frac{10.46}{3.96} ] * 0.77 = 2.034 \ rad/sec                                                          

Generally Kinetic energy is mathematically represented in term of moment of inertia as

                       KE = \frac{1}{2} * I * w^2

Now considering the kinetic energy before the masses are pulled in,

                     KE_i = \frac{1}{2} * I_i * w^2_i

The Moment of inertia would be  I_i = 10.46 \ Kg \cdot m^2

  The Angular speed would be  w_i = 0.77 \ rad/s

Now substituting these value into the equation above

              KE_i = \frac{1}{2} * (10.46) * (0.770)^2 = 3.101 J

Now considering the kinetic energy after the masses are pulled in,                      

               KE_f = \frac{1}{2} * I_f * w^2_f

The Moment of inertia would be  I_f = 3.96 \ Kg \cdot m^2

The Angular speed would be  w_f = 2.034 \ rad/s

Now substituting these value into the equation above

                        KE_f= \frac{1}{2} *(3.96)(2.034)^2  

                        = 8.192J        

8 0
3 years ago
Other questions:
  • What is the meaning of heredity
    11·1 answer
  • A railroad car of mass M moving at a speed v1 collides and couples with two coupled railroad cars, each of the same mass M and m
    15·1 answer
  • Jackson is designing a new heater, and he wants to experiment with different thermally conductive materials. Which of these mate
    9·1 answer
  • A descriptive investigation is a type of _____.
    7·2 answers
  • A uniform electric field is oriented in the −z direction. The magnitude of the electric field is 6500 N/C.
    5·1 answer
  • The potential difference between two parallel plates is 227 V. If the plates are 6.8 mm apart, what is the electric field betwee
    9·1 answer
  • Two uncharged metal spheres, spaced 25.0 cm apart, have a capacitance of 26.0 pF. How much work would it take to move 12.0 nC of
    7·1 answer
  • If g were 15 instead of 9.81, what would your quads look like?
    8·1 answer
  • In the reaction 2H, + O, → H,0, what coeficient should be placed in front of H,0 to balance the reaction?
    14·1 answer
  • I dont understand pojectile motion can someone help with this
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!