1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ahrayia [7]
3 years ago
8

Sorry it’s twisted but please help, thank you!

Physics
1 answer:
soldi70 [24.7K]3 years ago
3 0

Answer:

A-50 N

Explanation:

You might be interested in
500 grams of a radioactive material decays for 25 minutes until only 25.2 grams of the
maks197457 [2]

Answer:

Calculations Using the First Order Rate Equation: r = k[N]

Since the rate of radioactive decay is first order we can say: r = k[N]1, where r is a measurement of the rate of decay, k is the first order rate constant for the isotope, and N is the amount of radioisotope at the moment when the rate is measured.

6 0
2 years ago
A TMS (transcranial magnetic stimulation) device creates very rapidly changing magnetic fields. The field near a typical pulsed-
Scrat [10]

Answer:

A. 3.9 V B. 1.9 fA

Explanation:

Part A

What emf is induced in the ring as the field changes?

Express your answer to two significant figures and include the appropriate units.

The induced emf ε = ΔΦ/Δt where ΔΦ = change in magnetic flux = ΔABcosθ where A = area of coil and B = magnetic field strength, θ = angle between A and B = 0 (since the axis of the ring is parallel )Δt = change in time

ε = ΔΦ/Δt

ε = ΔABcos0°/Δt

ε = AΔB/Δt

A = πd²/4 where d = diameter of ring = 2.0 cm = 2.0 × 10⁻² m, A = π(2.0 × 10⁻² m)²/4 = π4.0 × 10⁻⁴ m²/4 = 3.142 × 10⁻⁴ m², ΔB = change in magnetic field strength = B₁ - B₀ where B₁ = final magnetic field strength = 2.5 T and B₀ = initial magnetic field strength = 0 T.  ΔB = B₁ - B₀  = 2.5 T -0 T = 2.5 T and Δt = 200 μs = 200 × 10⁻⁶ s.

So, ε = AΔB/Δt

ε = 3.142 × 10⁻⁴ m² × 2.5 T/200 × 10⁻⁶ s

ε = 7.854 × 10⁻⁴ m²-T/2 × 10⁻⁴ s

ε = 3.926 V

ε ≅ 3.9 V

Part B

If the band is gold with a cross-section area of 4.0 mm2, what is the induced current? Assume the band is of jeweler's gold and its resistivity is 13.2 x 1010 Ω*m.

Express your answer to two significant figures and include the appropriate units.

Since current, i = ε/R where ε = induced emf = 3.926 V and R = resistance of band = ρl/A where ρ = resistivity of band = 13.2 × 10¹⁰ Ωm, l = length of band = πd where d = diameter of band = 2.0 cm = 2.0 × 10⁻² m. So, l = π2.0 × 10⁻² m = 6.283 × 10⁻² m and A = cross-sectional area of band = 4.0 mm² = 4.0 × 10⁻⁶ m².

So, i =  ε/R

=  ε/ρl/A

= εA/ρl

= 3.926 V × 4.0 × 10⁻⁶ m²/(13.2 × 10¹⁰ Ωm × 6.283 × 10⁻² m)

= ‭15.704‬ × 10⁻⁶ V-m²/(82.9356‬ × 10⁸ Ωm²

= 0.1894 × 10⁻¹⁴ A

= 1.894 × 10⁻¹⁵ A

≅ 1.9 fA

6 0
3 years ago
Noah drops a rock with a density of 1.73 g/cm cubes into a pond. Will the rock float or sink? Explain your answer.
PolarNik [594]

Answer:

The rock will sink.

Explanation:

The density of water is about 1 g/cm cubed, the rock being more dense will sink in water.

8 0
3 years ago
Two remote control cars with masses of 1.16 kilograms and 1.98 kilograms travel toward each other at speeds of 8.64 meters per s
Black_prince [1.1K]

The initial momentum of the system can be expressed as,

p_i=m_1u_1+m_{2_{}}u_2

The final momentum of the system can be given as,

p_f=m_1v_1+m_{2_{}}v_2

According to conservation of momentum,

p_i=p_f

Plug in the known expressions,

\begin{gathered} m_1u_1+m_2u_2=m_1v_1+m_2v_2 \\ m_2v_2=m_1u_1+m_2u_2-m_1v_1 \\ v_2=\frac{m_1u_1+m_2u_2-m_1v_1}{m_2} \end{gathered}

Initially, the second mass move towards the first mass therefore the initial speed of second mass will be taken as negative and the recoil velocity of first mass is also taken as negative.

Plug in the known values,

\begin{gathered} v_2=\frac{(1.16\text{ kg)(8.64 m/s)+(1.98 kg)(-3.34 m/s)-(1.16 kg)(-2.16 m/s)}}{1.98\text{ kg}} \\ =\frac{10.02\text{ kgm/s-}6.61\text{ kgm/s+}2.51\text{ kgm/s}}{1.98\text{ kg}} \\ =\frac{5.92\text{ kgm/s}}{1.98\text{ kg}} \\ \approx2.99\text{ m/s} \end{gathered}

Thus, the final velocity of second mass is 2.99 m/s.

3 0
1 year ago
A car travels 40 miles north in 30 minutes and then turns around and travels 20 miles south in 30 minutes. The distance travelle
Pani-rosa [81]

Answer:

The distance traveled by the car is 60 miles and the displacement of the car is 20 miles in the north direction.

Explanation:

The distance is the total length of the car's path.

d = 40 mi + 20 mi

d = 60 mi

The displacement is the distance between the starting position and the final position.

x = (40 − 20) mi N

x = 20 mi N

7 0
4 years ago
Other questions:
  • Amit flies due east from san Francisco to Washington D. C, a displacement of 5600km. He then fliesfrom Washington D. C to Boston
    13·1 answer
  • A car increases its speed from 9.6 meters per second to 11.2 meters per second in 4.0 seconds. The average acceleration of the c
    14·2 answers
  • the ratio of kinetic energy to the potential energy of a certain object of mass m at a height of 40 m above ground level is 2:1.
    13·1 answer
  • Can anyone help me? (physics)
    12·1 answer
  • A scientific law states that planets move in elliptical orbits around stars. Which of these statements is correct about this law
    12·2 answers
  • An object of mass m moving at a speed of v1 possesses kinetic energy that is equal to KE1. When the object's speed is doubled, t
    8·1 answer
  • Describe the universe and its components
    6·1 answer
  • I need some help with this.
    8·1 answer
  • Compare the gravitational and electrical forces between an electron and a proton in the hydrogen atom (separated by 10^-10 m). W
    10·1 answer
  • A quantity that has only magnitude(size) is
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!