The awnser would be True. Hope I helped!
Answer:
t = 120.5 nm
Explanation:
given,
refractive index of the oil = 1.4
wavelength of the red light = 675 nm
minimum thickness of film = ?
formula used for the constructive interference

where n is the refractive index of oil
t is thickness of film
for minimum thickness
m = 0


t = 120.5 nm
hence, the thickness of the oil is t = 120.5 nm
a) 32.3 N
The force of gravity (also called weight) on an object is given by
W = mg
where
m is the mass of the object
g is the acceleration of gravity
For the ball in the problem,
m = 3.3 kg
g = 9.8 m/s^2
Substituting, we find the force of gravity on the ball:

b) 48.3 N
The force applied

The ball is kicked with this force, so we can assume that the kick is horizontal.
This means that the applied force and the weight are perpendicular to each other. Therefore, we can find the net force by using Pythagorean's theorem:

And substituting
W = 32.3 N
Fapp = 36 N
We find

c) 
The ball's acceleration can be found by using Newton's second law, which states that
F = ma
where
F is the net force on an object
m is its mass
a is its acceleration
For the ball in this problem,
m = 3.3 kg
F = 48.3 N
Solving the equation for a, we find

Answer:
They experience the same magnitude impulse
Explanation:
We have a ping-pong ball colliding with a stationary bowling ball. According to the law of conservation of momentum, we have that the total momentum before and after the collision must be conserved:
where is the initial momentum of the ping-poll ball
is the initial momentum of the bowling ball (which is zero, since the ball is stationary)
is the final momentum of the ping-poll ball
is the final momentum of the bowling ball
We can re-arrange the equation as follows or
which means (1) so the magnitude of the change in momentum of the ping-pong ball is equal to the magnitude of the change in momentum of the bowling ball.
However, we also know that the magnitude of the impulse on an object is equal to the change of momentum of the object:
(2) therefore, (1)+(2) tells us that the ping-pong ball and the bowling ball experiences the same magnitude impulse: