Answer:
<em>1.228 x </em>
<em> mm </em>
<em></em>
Explanation:
diameter of aluminium bar D = 40 mm
diameter of hole d = 30 mm
compressive Load F = 180 kN = 180 x
N
modulus of elasticity E = 85 GN/m^2 = 85 x
Pa
length of bar L = 600 mm
length of hole = 100 mm
true length of bar = 600 - 100 = 500 mm
area of the bar A =
=
= 1256.8 mm^2
area of hole a =
=
= 549.85 mm^2
Total contraction of the bar =
total contraction =
==>
= <em>1.228 x </em>
<em> mm </em>
Answer:
the less shielding of electrons
Answer:
4.7 m³
Explanation:
We'll use the gas law P1 • V1 / T1 = P2 • V2 / T2
* Givens :
P1 = 101 kPa , V1 = 2 m³ , T1 = 300.15 K , P2 = 40 kPa , T2 = 283.15 K
( We must always convert the temperature unit to Kelvin "K")
* What we want to find :
V2 = ?
* Solution :
101 × 2 / 300.15 = 40 × V2 / 283.15
V2 × 40 / 283.15 ≈ 0.67
V2 = 0.67 × 283.15 / 40
V2 ≈ 4.7 m³
Use Factor-Label Method:
8miles 63360 inches
---------- X --------------------- X
1 1 mile
2.54cm 1 meter
X ------------ X ---------------- X
1 inch 100 cm
1 km
----------------- = 12.87 km
1000meters
8 miles = 12.87 km
Answer:
D
Explanation:
<em>The correct answer would be in the axle of the wheels while you ride your bicycle.</em>
Options A, B, and C requires that the forces of friction is increased in order to have more control.
However, option D requires that there is a minimal frictional force in the axle of the wheels of a bicycle while riding so that a little effort would be required to keep the bicycle moving.
<u>The lesser the friction, the lower the effort that would be needed to keep the bicycle moving and vice versa.</u>